Docosahexaenoic acid protects against ischemic stroke in diabetic mice by inhibiting inflammatory responses and apoptosis.

Exp Neurol

Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China. Electronic address:

Published: November 2024

This study was to explore whether docosahexaenoic acid (DHA) protects against ischemic stroke in diabetic mice and its mechanisms. DHA was administered to mice and its effects on stroke outcomes in type 1 diabetes mellitus were assessed 24 h and 3 days post-reperfusion using RNA sequencing, flow cytometry, multiplex immunoassays, and western-blotting analysis. In diabetic mice, DHA administration post-ischemic stroke significantly reduced cerebral infarct size, brain edema, and neurological impairments. Flow cytometric analysis demonstrated a notable decrease in the percentage of neutrophils in the ischemic brain, suggesting a mitigated inflammatory response. Western blotting assay revealed that pro-apoptotic protein Bax was reduced whereas anti-apoptotic protein Bcl-2 was increased, indicating the attenuation of apoptosis. Additionally, RNA sequencing of brain tissue highlighted significant transcriptomic changes, with downregulation of genes for several inflammatory pathways such as NF-kappa B signaling and upregulation of genes for neuroprotective pathways such as neuroactive ligand-receptor interaction. Similar transcriptomic changes in peripheral blood mononuclear cells indicated that DHA treatment resulted the systemic anti-inflammatory and neuroprotective response. DHA treatment mitigated cerebral ischemic injuries by dampening inflammatory responses and apoptosis in diabetic mice after ischemic stroke, highlighting its therapeutic potential for clinical management of stroke in diabetic patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2024.115075DOI Listing

Publication Analysis

Top Keywords

diabetic mice
16
ischemic stroke
12
stroke diabetic
12
docosahexaenoic acid
8
protects ischemic
8
inflammatory responses
8
responses apoptosis
8
rna sequencing
8
transcriptomic changes
8
dha treatment
8

Similar Publications

Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs.

View Article and Find Full Text PDF

Tetrahydroberberrubine improves hyperlipidemia by activating the AMPK/SREBP2/PCSK9/LDL receptor signaling pathway.

Eur J Pharmacol

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China. Electronic address:

Hyperlipidemia is a major risk factor for hypertension, coronary heart disease, diabetes and stroke, triggering an intensified research efforts into its prevention and treatment. Tetrahydroberberrubine (THBru) is a derivative of berberine (BBR) that has been shown to have higher bioavailability and lower toxicity compared to its parent compound. However, its impact on hyperlipidemia has not been fully explored.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!