Cultivating microalgae for the remediation of aquaculture wastewater provides a promising solution for pollution control. However, the economic viability of this approach faces challenges due to the high costs associated with microalgal biomass harvesting. This study aims to address this issue by immobilizing microalgae onto coral velvet carriers, enhancing the efficiency of biomass recovery. Four types of microalgae were screened: Chlorella sp., Isochrysis galbana, Chaetoceros sp., and Nannochloropsis sp. Among them, Isochrysis galbana exhibited the best self sedimentation rate, achieving a self sedimentation rate of 94.36%. Chlorella sp. demonstrated the best denitrification rate, with a nitrate removal rate of 100% and an inorganic nitrogen removal rate of 79.13%. In addition, this study found that extracellular polymeric substances(EPS) affects the self-settling performance of microalgae, and the results emphasize the key role of tightly-bound EPS(TB-EPS) content in determining self settling efficiency. Furthermore,the assessments of the purification of simulated aquaculture wastewater were conducted, comparing the outcomes of co-cultivation with mono-culture. The co-cultivation strategy showed exceptional efficacy, achieving a 100% removal rate for NO-N by the 5th day. In contrast, mono-cultures of Chlorella sp. and Isochrysis galbana showed removal rates of 77.76% and 45.72%, respectively, at the same interval. Applying of the co-cultivation microalgal biofilm to treat the actual aquaculture wastewater showed remarkable denitrification performance, attaining a 100% removal rate for NO-N by the 7th day. The study proposes the co-cultivation of Chlorella sp. and Isochrysis galbana for treating aquaculture wastewater and explores the potential application of immobilization technology to remove nitrogen-containing pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120342DOI Listing

Publication Analysis

Top Keywords

aquaculture wastewater
16
isochrysis galbana
16
removal rate
16
chlorella isochrysis
12
self-settling performance
8
sedimentation rate
8
100% removal
8
rate no-n
8
rate
7
co-cultivation
5

Similar Publications

Hotspots of nitrogen losses from anthropogenic sources in the Huang-Huai-Hai Basin, China.

Environ Pollut

December 2024

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, State Key Laboratory of Nutrient Use and Management, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China. Electronic address:

Poor management of nitrogen (N) can lead to serious environmental problems, such as air and water pollution. The accurate identification of priority control areas and emission sources is critical for making effective decisions regarding sustainable N management. This study aimed to identify hotspots for N losses and quantitatively analyze the relative contributions of different emission sources in the Huang-Huai-Hai Basin at the county scale.

View Article and Find Full Text PDF

With the development of industry, agriculture, and aquaculture, excessive ammonia nitrogen mainly involving ionic ammonia (NH) and molecular ammonia (NH) has inevitable access to the aquatic environment, posing a severe threat to water safety. Photocatalytic technology shows great advantages for ammonia nitrogen removal, such as its efficiency, reusability, low cost, and environmental friendliness. In this study, CP (g-CN/CoP) composite materials, which exhibited high-efficiency ammonia nitrogen removal, were synthesized through a simple self-assembly method.

View Article and Find Full Text PDF

The detection of tetracycline antibiotics in environmental waters is crucial due to their widespread use, persistence, and potential toxicity. Herein, a method for the specific detection of tetracycline in aquaculture wastewater using a nitrogen-doped carbon quantum dots fluorescence probe is reported. Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in one step via a hydrothermal method, employing citric acid as the carbon source and diethylenetriamine as the nitrogen source.

View Article and Find Full Text PDF

Eutrophication remains a persistent water quality issue throughout much of the United States, leading to changes to ecosystem health in valuable coastal habitats. Oysters help to buffer against eutrophication by removing nitrogen from the water column by feeding on phytoplankton and other seston, a process referred to as "bioextraction". Recent legislation in Texas has allowed oysters to be grown off-bottom (suspended in cages).

View Article and Find Full Text PDF

Innovative microalgae technologies for mariculture wastewater treatment: Single and combined microalgae treatment mechanisms, challenges and future prospects.

Environ Res

December 2024

School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning, 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, China. Electronic address:

The discharge of aquaculture wastewater, comprising nitrogen, phosphorus, heavy metals, and antibiotics from large-scale aquaculture, poses a significant threat to marine ecosystems and human health. Consequently, addressing the treatment of marine aquaculture wastewater is imperative. Conventional physicochemical treatment methods have various limitations, whereas microalgae-based biological treatment technologies have gained increasing attention in the field of water purification due to their ability to efficiently absorb organic matter from mariculture wastewater and convert CO₂ into biomass products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!