AI Article Synopsis

  • Photosynthesis is crucial for plant growth and the study focuses on a leaf color mutant of 'Benihoppe' strawberry, which has darker green leaves and enhanced chlorophyll and carotenoid levels, leading to a higher photosynthetic rate.
  • Transcriptome analysis reveals that specific genes related to chloroplast development and chlorophyll synthesis are significantly upregulated in the mutant, while degradation genes are downregulated, resulting in greater chlorophyll accumulation.
  • The study provides insights into the genetic mechanisms behind the dark-green leaf phenotype in strawberries, offering potential resources for developing new varieties with improved photosynthetic efficiency.

Article Abstract

Photosynthesis is a source of energy for various types of plant life activities and is essential for plant growth and development. Consequently, the study of photosynthetic mechanisms has been a hot spot. Leaf color mutants has always been ideal materials for exploring the mechanisms of chlorophyll metabolism and photosynthesis. In this study, we identified a leaf color mutant of 'Benihoppe' strawberry in the field, which exhibited a darker green leaf color compared with the wild type. The content of total chlorophyll and carotenoid in the mutant leaves was elevated by 7.44-20.23% and 8.9-21.92%, respectively, compared with that of the wild type. Additionally, net photosynthetic rate in the mutant increased by 20.13%. Further transcriptome analysis showed that significant upregulation of genes such as GLK1, PPR, and MORF9 in the mutant leaves, which promoted chloroplast development. The expression levels of UROD, PPOC, PORA, CHLG, and CPOX were significantly upregulated during chlorophyll synthesis, while the expression levels of HCAR and CYP89A9 were significantly downregulated during chlorophyll degradation, thus leading to the accumulation of chlorophyll in mutant leaves. The upregulation of gene expression levels such as PetM, AtpD, PGK, and RPI4 during photosynthesis promoted multiple stages of light and dark reaction, thereby enhancing the photosynthetic capacity of the mutant. And the changes in metabolites such as monogalactosyl monoacylglycerol (MGMG), glucuronosyldiacylglycerol (GlcADG), raffinose, etc. also indicate that the mutant has metabolic differences in chloroplast composition and photosynthesis compared to 'Benihoppe'. The above results not only deepen our understanding of the mechanism behind the dark-green leaf color in strawberry mutants but also provide potential genetic resources for cultivating strawberry varieties with enhanced photosynthetic capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.109327DOI Listing

Publication Analysis

Top Keywords

leaf color
20
mutant leaves
12
expression levels
12
dark-green leaf
8
color strawberry
8
mutant
8
compared wild
8
wild type
8
photosynthetic capacity
8
leaf
5

Similar Publications

Integrative Targeted Metabolomics and Transcriptomics Reveal the Mechanism of Leaf Coloration in 'Sakimp005'.

Int J Mol Sci

December 2024

Research and Development Center of Landscape Plants and Horticulture Flowers, Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China.

One of the most important characteristics of ornamental plants is leaf color, which enhances the color of plant landscapes and attracts pollinators for reproduction. The leaves of 'Sakimp005' are initially green, then the middle part appears yellow, then gradually become white, while the edge remains green. In the study, leaves of 'Sakimp005', in four developmental stages (S1-G, S2-C, S3-C, and S4-C), were selected for the determination of pigment content, chromaticity values, integrative metabolomics, and transcriptomics analyses.

View Article and Find Full Text PDF

Cytological, Physiological, and Transcriptome Analysis of Leaf-Yellowing Mutant in .

Int J Mol Sci

December 2024

Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China.

Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new variety 'Diecui Liuji' in terms of changes in its cell structure, pigment content, and transcript levels.

View Article and Find Full Text PDF

Embedment of Biosynthesised Silver Nanoparticles in PolyNIPAAm/Chitosan Hydrogel for Development of Proactive Smart Textiles.

Nanomaterials (Basel)

December 2024

Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia.

A smart viscose fabric with temperature and pH responsiveness and proactive antibacterial and UV protection was developed. PNCS (poly-(N-isopropylakrylamide)/chitosan) hydrogel was used as the carrier of silver nanoparticles (Ag NPs), synthesised in an environmentally friendly manner using AgNO and a sumac leaf extract. PNCS hydrogel and Ag NPs were applied to the viscose fabric by either in situ synthesis of Ag NPs on the surface of viscose fibres previously modified with PNCS hydrogel, or by the direct immobilisation of Ag NPs by the dehydration/hydration of the PNCS hydrogel with the nanodispersion of Ag NPs in the sumac leaf extract and subsequent application to the viscose fibres.

View Article and Find Full Text PDF

Background: Perilla frutescens (L.) Britt. (Lamiaceae) leaves are essential culinary and medicinal herbs, native to East Asian countries.

View Article and Find Full Text PDF

Genetic variation for malting quality as well as metabolomic and near-infrared features was identified. However, metabolomic and near-infrared features as additional omics-information did not improve accuracy of predicted breeding values. Significant attention has recently been given to the potential benefits of metabolomics and near-infrared spectroscopy technologies for enhancing genetic evaluation in breeding programs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!