Interplay between Notch signaling and mechanical forces during developmental patterning processes.

Curr Opin Cell Biol

School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel. Electronic address:

Published: December 2024

The coordination between biochemical signals and cell mechanics has emerged in recent years as a crucial mechanism driving developmental patterning processes across a variety of developing and homeostatic systems. An important class of such developmental processes relies on local communication between neighboring cells through Notch signaling. Here, we review how the coordination between Notch-mediated differentiation and cell mechanics can give rise to unique cellular patterns. We discuss how global and local mechanical cues can affect, and be affected by, cellular differentiation and reorganization controlled by Notch signaling. We compare recent studies of such developmental processes, including the mammalian inner ear, Drosophila ommatidia, intestinal organoids, and zebrafish myocardium, to draw shared general concepts and their broader implications in biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceb.2024.102444DOI Listing

Publication Analysis

Top Keywords

notch signaling
12
developmental patterning
8
patterning processes
8
cell mechanics
8
developmental processes
8
interplay notch
4
signaling mechanical
4
mechanical forces
4
developmental
4
forces developmental
4

Similar Publications

Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.

View Article and Find Full Text PDF

The role of lin-12 notch in C. elegans anchor cell proliferation.

Biol Open

December 2024

Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren CH-8952, Switzerland.

The gonadal anchor cell (AC) is an essential organizer for the development of the egg-laying organ in the C. elegans hermaphrodite. Recent work has investigated the mechanisms that control the quiescent state the AC adopts while fulfilling its functions.

View Article and Find Full Text PDF

Acute Kidney Injury (AKI) is a significant medical condition characterized by the abrupt decline in kidney function.Low-intensity pulsed ultrasound (LIPUS), a non-invasive therapeutic technique employing low-intensity acoustic wave pulses, has shown promise in promoting tissue repair and regeneration. A novel LIPUS system was developed and evaluated in rat AKI models, focusing on its effects on glomerular filtration rate (GFR), blood urea nitrogen (BUN), serum creatinine (SCr), and the Notch1-Akt-eNOS signaling pathway.

View Article and Find Full Text PDF

Macrophages play a vital role in the inflammation and repair processes of ischemia/reperfusion-induced acute kidney injury (IR-AKI). The mechanosensitive ion channel Piezo1 is significant in these inflammatory processes. However, the exact role of macrophage in IR-AKI is unknown.

View Article and Find Full Text PDF

The inner ear houses both hearing and balance sensory modalities. The hearing and balance organs consist of similar cell types, including sensory hair cells and associated supporting cells. Previously we showed that is required for maintaining supporting cell survival during cochlear maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!