Strong connectivity to the sensorimotor cortex predicts clinical effectiveness of thalamic deep brain stimulation in essential tremor.

Neuroimage Clin

Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076 Tübingen, Germany; Center for Bionic Intelligence Tübingen Stuttgart (BITS), 72076 Tübingen, Germany; German Center for Mental Health (DZPG), 72076 Tübingen, Germany. Electronic address:

Published: November 2024

Introduction: The outcome of thalamic deep brain stimulation (DBS) for essential tremor (ET) varies, probably due to the difficulty in identifying the optimal target for DBS placement. Recent approaches compared the clinical response with a connectivity-based segmentation of the target area. However, studies are contradictory by indicating the connectivity to the primary motor cortex (M1) or to the premotor/supplementary motor cortex (SMA) to be therapeutically relevant.

Objective: To identify the connectivity profile that corresponds to clinical effective targeting of DBS for ET.

Methods: Patient-specific probabilistic diffusion tensor imaging was performed in 20 ET patients with bilateral thalamic DBS. Following monopolar review, the stimulation response was classified for the most effective contact in each hemisphere as complete vs. incomplete upper limb tremor suppression (40 assessments). Finally, the connectivity profiles of these contacts within the cortical and cerebellar tremor network were estimated and compared between groups.

Results: The active contacts that led to complete (n = 25) vs. incomplete (n = 15) tremor suppression showed significantly higher connectivity to M1 (p < 0.001), somatosensory cortex (p = 0.008), anterior lobe of the cerebellum (p = 0.026) and SMA (p = 0.05); with Cohen's (d) effect sizes of 0.53, 0.42, 0.25 and 0.10, respectively. The clinical benefits were achieved without requiring higher stimulation intensities or causing additional side effects.

Conclusion: Clinical effectiveness of DBS for ET corresponded to a distributed connectivity profile, with the connection to the sensorimotor cortex being most relevant. Long-term follow-up in larger cohorts and replication in out-of-sample data are necessary to confirm the robustness of these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638635PMC
http://dx.doi.org/10.1016/j.nicl.2024.103709DOI Listing

Publication Analysis

Top Keywords

thalamic deep
8
deep brain
8
brain stimulation
8
essential tremor
8
motor cortex
8
tremor suppression
8
tremor
5
strong connectivity
4
connectivity sensorimotor
4
sensorimotor cortex
4

Similar Publications

Bilateral Lesions in Parkinson's Disease: Gaps and Controversies.

Mov Disord

December 2024

Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, INSERM, Grenoble, France.

Bilateral lesions of the basal ganglia using termocoagulation or radiation for improving tremor, bradykinesia, and rigidity in people with Parkinson's disease (PD) have been performed starting several decades ago, especially when levodopa and deep brain stimulation (DBS) surgery were not available. However, because of unclear additional benefit compared to unilateral lesion, and particularly to the evidence of increased adverse events occurrence, bilateral lesions were basically abandoned at the end of the 20th century. Therefore, bilateral DBS has become the standard procedure to treat PD.

View Article and Find Full Text PDF

The thalamus is a collection of gray matter nuclei that play a crucial role in sensorimotor processing and modulation of cortical activity. Characterizing thalamic nuclei non-invasively with structural MRI is particularly relevant for patient populations with Parkinson's disease, epilepsy, dementia, and schizophrenia. However, severe head motion in these populations poses a significant challenge for in vivo mapping of thalamic nuclei.

View Article and Find Full Text PDF

Aim: This study aimed to summarise and analyse the magnetic resonance imaging (MRI) characteristics of patients with myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disease (MOGAD), and to enhance the accuracy of disease diagnosis and advance scientific research.

Materials And Methods: A retrospective collection of clinical data from 103 patients with MOGAD was conducted. The distribution and signal characteristics of intracranial lesions on MRI were analysed.

View Article and Find Full Text PDF

Objective: This study aims to evaluate the efficacy and safety of deep brain stimulation (DBS) of the medial pulvinar nucleus (PuM) in reducing seizure frequency and addressing comorbidities in patients with drug and vagal nerve-resistant focal epilepsy.

Methods: This is an open-label prospective treatment trial with a planned enrollment of 12 patients suffering from medically refractory epilepsy (Clinical trial gov NCT04692701), for which the interim 12-month post-implantation results for the first 6 patients are being reported. Inclusion criteria were focal epilepsy not suitable for or after failed surgical intervention and previous failure of neurostimulation therapies (vagus nerve stimulation or anterior thalamic nucleus DBS).

View Article and Find Full Text PDF

Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!