Introduction: The outcome of thalamic deep brain stimulation (DBS) for essential tremor (ET) varies, probably due to the difficulty in identifying the optimal target for DBS placement. Recent approaches compared the clinical response with a connectivity-based segmentation of the target area. However, studies are contradictory by indicating the connectivity to the primary motor cortex (M1) or to the premotor/supplementary motor cortex (SMA) to be therapeutically relevant.
Objective: To identify the connectivity profile that corresponds to clinical effective targeting of DBS for ET.
Methods: Patient-specific probabilistic diffusion tensor imaging was performed in 20 ET patients with bilateral thalamic DBS. Following monopolar review, the stimulation response was classified for the most effective contact in each hemisphere as complete vs. incomplete upper limb tremor suppression (40 assessments). Finally, the connectivity profiles of these contacts within the cortical and cerebellar tremor network were estimated and compared between groups.
Results: The active contacts that led to complete (n = 25) vs. incomplete (n = 15) tremor suppression showed significantly higher connectivity to M1 (p < 0.001), somatosensory cortex (p = 0.008), anterior lobe of the cerebellum (p = 0.026) and SMA (p = 0.05); with Cohen's (d) effect sizes of 0.53, 0.42, 0.25 and 0.10, respectively. The clinical benefits were achieved without requiring higher stimulation intensities or causing additional side effects.
Conclusion: Clinical effectiveness of DBS for ET corresponded to a distributed connectivity profile, with the connection to the sensorimotor cortex being most relevant. Long-term follow-up in larger cohorts and replication in out-of-sample data are necessary to confirm the robustness of these findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638635 | PMC |
http://dx.doi.org/10.1016/j.nicl.2024.103709 | DOI Listing |
Mov Disord
December 2024
Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, INSERM, Grenoble, France.
Bilateral lesions of the basal ganglia using termocoagulation or radiation for improving tremor, bradykinesia, and rigidity in people with Parkinson's disease (PD) have been performed starting several decades ago, especially when levodopa and deep brain stimulation (DBS) surgery were not available. However, because of unclear additional benefit compared to unilateral lesion, and particularly to the evidence of increased adverse events occurrence, bilateral lesions were basically abandoned at the end of the 20th century. Therefore, bilateral DBS has become the standard procedure to treat PD.
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy.
The thalamus is a collection of gray matter nuclei that play a crucial role in sensorimotor processing and modulation of cortical activity. Characterizing thalamic nuclei non-invasively with structural MRI is particularly relevant for patient populations with Parkinson's disease, epilepsy, dementia, and schizophrenia. However, severe head motion in these populations poses a significant challenge for in vivo mapping of thalamic nuclei.
View Article and Find Full Text PDFClin Radiol
November 2024
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Aim: This study aimed to summarise and analyse the magnetic resonance imaging (MRI) characteristics of patients with myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disease (MOGAD), and to enhance the accuracy of disease diagnosis and advance scientific research.
Materials And Methods: A retrospective collection of clinical data from 103 patients with MOGAD was conducted. The distribution and signal characteristics of intracranial lesions on MRI were analysed.
Front Neurol
December 2024
Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France.
Objective: This study aims to evaluate the efficacy and safety of deep brain stimulation (DBS) of the medial pulvinar nucleus (PuM) in reducing seizure frequency and addressing comorbidities in patients with drug and vagal nerve-resistant focal epilepsy.
Methods: This is an open-label prospective treatment trial with a planned enrollment of 12 patients suffering from medically refractory epilepsy (Clinical trial gov NCT04692701), for which the interim 12-month post-implantation results for the first 6 patients are being reported. Inclusion criteria were focal epilepsy not suitable for or after failed surgical intervention and previous failure of neurostimulation therapies (vagus nerve stimulation or anterior thalamic nucleus DBS).
Cogn Neurodyn
December 2024
Department of Neurology, Tangshan Gongren Hospital, Tangshan, 063000 China.
Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!