Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phenolic compounds are popular in screening novel hypoglycemic agents, but the impact of oxidative degradation on the determination of α-glucosidase inhibitory activity and bioavailability is unclear. Here we showed 12 phenolic compounds structure-dependently degraded during standard simulated digestion, while in physiological hypoxia their retention rates were all over 87.89 %. This enhancement of digestive stability resulted in the biggest drop of 31.72 % in IC against α-glucosidase and a significant increase in bioavailability. Enzyme kinetic and multi-spectroscopic analysis confirmed oxygen weakened the affinity of compounds to α-glucosidase, but the mechanisms were not changed. Moreover, a two-chamber culture system was designed to meet conflicting demands for oxygen between epithelium and cavity, and better α-glucosidase inhibitory activities (51.61 % maximum reduction in glucose production) and absorption rates (up to 1.10 % from undetectable) were obtained than those of uncontrolled oxygen. Hence, the oxygen level should be monitored to assess the activities of phenolic compounds in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.142165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!