Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease characterized by vascular amyloid-β (Aβ) deposition. CAA is often seen in the brains of elderly individuals and in a majority of patients with Alzheimer's disease. The molecular pathways triggered by vascular Aβ, causing vessel wall breakdown and ultimately leading to intracerebral haemorrhage and cognitive decline, remain poorly understood. The occurrence of CAA-related inflammation (CAA-ri) and Amyloid-Related Imaging Abnormalities (ARIA) have sparked interest for a role of neuroinflammation in CAA pathogenesis. This review discusses prior studies of neuroinflammation in CAA and outlines potential future research directions targeting candidates such as matrix metalloproteinases, complement activation, microglial activation, reactive astrocytes and parenchymal border macrophages. Understanding the role of neuroinflammation in CAA pathogenesis could help identify new therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648568 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2024.105466 | DOI Listing |
Brain Behav Immun Health
February 2025
Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
Background: Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al.
View Article and Find Full Text PDFVirol J
January 2025
Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran.
Background: Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that leads to lifelong infection and multiple diseases, including HAM/TSP and ATLL. Despite extensive research, the exact pathophysiology of HTLV infection and its related diseases is enigmatic. In this study, we aimed to review and analyze the effect of different HLA alleles as protective or predisposing factors in HTLV-1 infection and its progression to related diseases.
View Article and Find Full Text PDFApoptosis
January 2025
Department of Laboratory Animal Science, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, Liaoning Province, 110122, China.
This study investigates silibinin's capacity to mitigate Alzheimer's disease (AD) pathologies with a particular emphasis on its effects on apoptosis and synaptic dysfunction in AD models. Employing APP/PS1 transgenic mice and SH-SY5Y neuroblastoma cell lines, our research assessed the efficacy of silibinin in reducing amyloid-beta (Aβ) deposition, neuroinflammation, and neuronal apoptosis. Our results demonstrate that silibinin significantly decreases Aβ accumulation and neuroinflammation and robustly inhibits apoptosis in neuronal cells.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511 AlBeheira, Egypt.
Cerebrolysin (CBL) is a combination of neurotrophic peptides and amino acids derived from pig brains. CBL can cross the blood-brain barrier (BBB) and its biological effect is similar to the effect of endogenous neurotrophic effects. The mechanism of action of CBL is related to the induction of neurogenesis, neuroplasticity, neuroprotection, and neurotrophicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!