A Multi-task learning U-Net model for end-to-end HEp-2 cell image analysis.

Artif Intell Med

Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Salerno, Italy.

Published: January 2025

Antinuclear Antibody (ANA) testing is pivotal to help diagnose patients with a suspected autoimmune disease. The Indirect Immunofluorescence (IIF) microscopy performed with human epithelial type 2 (HEp-2) cells as the substrate is the reference method for ANA screening. It allows for the detection of antibodies binding to specific intracellular targets, resulting in various staining patterns that should be identified for diagnosis purposes. In recent years, there has been an increasing interest in devising deep learning methods for automated cell segmentation and classification of staining patterns, as well as for other tasks related to this diagnostic technique (such as intensity classification). However, little attention has been devoted to architectures aimed at simultaneously managing multiple interrelated tasks, via a shared representation. In this paper, we propose a deep neural network model that extends U-Net in a Multi-Task Learning (MTL) fashion, thus offering an end-to-end approach to tackle three fundamental tasks of the diagnostic procedure, i.e., HEp-2 cell specimen intensity classification, specimen segmentation, and pattern classification. The experiments were conducted on one of the largest publicly available datasets of HEp-2 images. The results showed that the proposed approach significantly outperformed the competing state-of-the-art methods for all the considered tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2024.103031DOI Listing

Publication Analysis

Top Keywords

multi-task learning
8
hep-2 cell
8
staining patterns
8
tasks diagnostic
8
intensity classification
8
learning u-net
4
u-net model
4
model end-to-end
4
hep-2
4
end-to-end hep-2
4

Similar Publications

Diagnosis of Parkinson's disease by eliciting trait-specific eye movements in multi-visual tasks.

J Transl Med

January 2025

School of Information and Communication Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China.

Background: Parkinson's Disease (PD) is a neurodegenerative disorder, and eye movement abnormalities are a significant symptom of its diagnosis. In this paper, we developed a multi-task driven by eye movement in a virtual reality (VR) environment to elicit PD-specific eye movement abnormalities. The abnormal features were subsequently modeled by using the proposed deep learning algorithm to achieve an auxiliary diagnosis of PD.

View Article and Find Full Text PDF

PADS-Net: GAN-based radiomics using multi-task network of denoising and segmentation for ultrasonic diagnosis of Parkinson disease.

Comput Med Imaging Graph

January 2025

The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address:

Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images.

View Article and Find Full Text PDF

CLSSATP: Contrastive learning and self-supervised learning model for aquatic toxicity prediction.

Aquat Toxicol

January 2025

School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China. Electronic address:

As compound concentrations in aquatic environments increase, the habitat degradation of aquatic organisms underscores the growing importance of studying the impact of chemicals on diverse aquatic populations. Understanding the potential impacts of different chemical substances on different species is a necessary requirement for protecting the environment and ensuring sustainable human development. In this regard, deep learning methods offer significant advantages over traditional experimental approaches in terms of cost, accuracy, and generalization ability.

View Article and Find Full Text PDF

Glo-net: A dual task branch based neural network for multi-class glomeruli segmentation.

Comput Biol Med

January 2025

Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Future Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China. Electronic address:

Accurate segmentation and classification of glomeruli are fundamental to histopathology slide analysis in renal pathology, which helps to characterize individual kidney disease. Accurate segmentation of glomeruli of different types faces two main challenges compared to traditional primitives segmentation in computational image analysis. Limited by small kernel size, traditional convolutional neural networks could hardly understand the complete context information of different glomeruli.

View Article and Find Full Text PDF

RAMIE: retrieval-augmented multi-task information extraction with large language models on dietary supplements.

J Am Med Inform Assoc

January 2025

Division of Computational Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States.

Objective: To develop an advanced multi-task large language model (LLM) framework for extracting diverse types of information about dietary supplements (DSs) from clinical records.

Methods: We focused on 4 core DS information extraction tasks: named entity recognition (2 949 clinical sentences), relation extraction (4 892 sentences), triple extraction (2 949 sentences), and usage classification (2 460 sentences). To address these tasks, we introduced the retrieval-augmented multi-task information extraction (RAMIE) framework, which incorporates: (1) instruction fine-tuning with task-specific prompts; (2) multi-task training of LLMs to enhance storage efficiency and reduce training costs; and (3) retrieval-augmented generation, which retrieves similar examples from the training set to improve task performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!