CMINNs: Compartment model informed neural networks - Unlocking drug dynamics.

Comput Biol Med

Division of Applied Mathematics, Brown University, Providence, RI, USA. Electronic address:

Published: January 2025

In the field of pharmacokinetics and pharmacodynamics (PKPD) modeling, which plays a pivotal role in the drug development process, traditional models frequently encounter difficulties in fully encapsulating the complexities of drug absorption, distribution, and their impact on targets. Although multi-compartment models are frequently utilized to elucidate intricate drug dynamics, they can also be overly complex. To generalize modeling while maintaining simplicity, we propose an innovative approach that enhances PK and integrated PK-PD modeling by incorporating fractional calculus or time-varying parameter(s), combined with constant or piecewise constant parameters. These approaches effectively model anomalous diffusion, thereby capturing drug trapping and escape rates in heterogeneous tissues, which is a prevalent phenomenon in drug dynamics. Furthermore, this method provides insight into the dynamics of drug in cancer in multi-dose administrations. Our methodology employs a Physics-Informed Neural Network (PINN) and fractional Physics-Informed Neural Networks (fPINNs), integrating ordinary differential equations (ODEs) with integer/fractional derivative order from compartmental modeling with neural networks. This integration optimizes parameter estimation for variables that are time-variant, constant, piecewise constant, or related to the fractional derivative order. The results demonstrate that this methodology offers a robust framework that not only markedly enhances the model's depiction of drug absorption rates and distributed delayed responses but also unlocks different drug-effect dynamics, providing new insights into absorption rates, anomalous diffusion, drug resistance, persistence, and pharmacokinetic tolerance, all within a system of just two (fractional) ODEs with explainable results. These findings have the potential to streamline drug development by improving the prediction of drug behavior in complex biological systems and shedding light on cancer cell death mechanisms, ultimately aiding in the design of more effective therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701831PMC
http://dx.doi.org/10.1016/j.compbiomed.2024.109392DOI Listing

Publication Analysis

Top Keywords

neural networks
12
drug dynamics
12
drug
11
drug development
8
models frequently
8
drug absorption
8
constant piecewise
8
piecewise constant
8
anomalous diffusion
8
physics-informed neural
8

Similar Publications

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Neural Network (S-CNN) that achieved an F1 score of 82.

View Article and Find Full Text PDF

In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).

View Article and Find Full Text PDF

Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.

Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!