Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: This study aims to compare the relative sensitivity between scene-independent and scene-dependent eye metrics in assessing trainees' performance in simulated psychomotor tasks.
Background: Eye metrics have been extensively studied for skill assessment and training in psychomotor tasks, including aviation, driving, and surgery. These metrics can be categorized as scene-independent or scene-dependent, based on whether predefined areas of interest are considered. There is a paucity of direct comparisons between these metric types, particularly in their ability to assess performance during early training.
Method: Thirteen medical students practiced the peg transfer task in the Fundamentals of Laparoscopic Surgery. Scene-independent and scene-dependent eye metrics, completion time, and tool motion metrics were derived from eye-tracking data and task videos. K-means clustering of nine eye metrics identified three groups of practice trials with similar gaze behaviors, corresponding to three performance levels verified by completion time and tool motion metrics. A random forest model using eye metrics estimated classification accuracy and determined the feature importance of the eye metrics.
Results: Scene-dependent eye metrics demonstrated a clearer linear trend with performance levels than scene-independent metrics. The random forest model achieved 88.59% accuracy, identifying the top four predictors of performance as scene-dependent metrics, whereas the two least effective predictors were scene-independent metrics.
Conclusion: Scene-dependent eye metrics are overall more sensitive than scene-independent ones for assessing trainee performance in simulated psychomotor tasks.
Application: The study's findings are significant for advancing eye metrics in psychomotor skill assessment and training, enhancing operator competency, and promoting safe operations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00187208241302475 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!