Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Artificial intelligence (AI) has become increasingly important in health care, generating both curiosity and concern. With a doctor-patient ratio of 1:834 in India, AI has the potential to alleviate a significant health care burden. Public perception plays a crucial role in shaping attitudes that can facilitate the adoption of new technologies. Similarly, the acceptance of AI-driven mental health interventions is crucial in determining their effectiveness and widespread adoption. Therefore, it is essential to study public perceptions and usage of existing AI-driven mental health interventions by exploring user experiences and opinions on their future applicability, particularly in comparison to traditional, human-based interventions.
Objective: This study aims to explore the use, perception, and acceptance of AI-driven mental health interventions in comparison to traditional, human-based interventions.
Methods: A total of 466 adult participants from India voluntarily completed a 30-item web-based survey on the use and perception of AI-based mental health interventions between November and December 2023.
Results: Of the 466 respondents, only 163 (35%) had ever consulted a mental health professional. Additionally, 305 (65.5%) reported very low knowledge of AI-driven interventions. In terms of trust, 247 (53%) expressed a moderate level of Trust in AI-Driven Mental Health Interventions, while only 24 (5.2%) reported a high level of trust. By contrast, 114 (24.5%) reported high trust and 309 (66.3%) reported moderate Trust in Human-Based Mental Health Interventions; 242 (51.9%) participants reported a high level of stigma associated with using human-based interventions, compared with only 50 (10.7%) who expressed concerns about stigma related to AI-driven interventions. Additionally, 162 (34.8%) expressed a positive outlook toward the future use and social acceptance of AI-based interventions. The majority of respondents indicated that AI could be a useful option for providing general mental health tips and conducting initial assessments. The key benefits of AI highlighted by participants were accessibility, cost-effectiveness, 24/7 availability, and reduced stigma. Major concerns included data privacy, security, the lack of human touch, and the potential for misdiagnosis.
Conclusions: There is a general lack of awareness about AI-driven mental health interventions. However, AI shows potential as a viable option for prevention, primary assessment, and ongoing mental health maintenance. Currently, people tend to trust traditional mental health practices more. Stigma remains a significant barrier to accessing traditional mental health services. Currently, the human touch remains an indispensable aspect of human-based mental health care, one that AI cannot replace. However, integrating AI with human mental health professionals is seen as a compelling model. AI is positively perceived in terms of accessibility, availability, and destigmatization. Knowledge and perceived trustworthiness are key factors influencing the acceptance and effectiveness of AI-driven mental health interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638687 | PMC |
http://dx.doi.org/10.2196/64380 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!