Hydrogel iontronic devices can emulate biological functions and communicate with living matter. But the fabrication of miniature, soft iontronic devices according to modular designs has not been achieved. In this work, we report the use of surfactant-supported assembly of freestanding microscale hydrogel droplets to construct various iontronic modules, circuits, and biointerfaces. Chemical modifications of silk fibroin produced a pair of oppositely charged hydrogels. Microscale assembly of various combinations of hydrogel droplets produced iontronic diodes, npn- and pnp-type transistors, and diverse reconfigurable logic gates. Through the incorporation of poly(amino acid)s, we have demonstrated a droplet-based synthetic synapse with ionic polymer-mediated long-term plasticity. Further, our iontronic transistor can serve as a biocompatible sensor to record electrophysiological signals from sheets of human cardiomyocytes, paving a way to the building of miniature bioiontronic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adr0428DOI Listing

Publication Analysis

Top Keywords

iontronic devices
8
hydrogel droplets
8
iontronic
5
microscale droplet
4
droplet assembly
4
assembly enables
4
enables biocompatible
4
biocompatible multifunctional
4
multifunctional modular
4
modular iontronics
4

Similar Publications

Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature.

View Article and Find Full Text PDF

Piezoionic materials have attracted considerable attention for their ability to generate iontronic signals or power in response to stress stimuli. However, the limited intrinsic transport distinction between cations and anions within most ionic materials results in weakened iontronic power conversion efficiencies under stress fields. Here, we report a piezoheterogated biphasic gel for ultrahigh iontronic generation, characterized by high-internal microphase heterointerfaces that facilitate the distinct transport of various ion species.

View Article and Find Full Text PDF

Skin-Friendly Large Matrix Iontronic Sensing Meta-Fabric for Spasticity Visualization and Rehabilitation Training via Piezo-Ionic Dynamics.

Nanomicro Lett

December 2024

Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China.

Rehabilitation training is believed to be an effectual strategy that can reduce the risk of dysfunction caused by spasticity. However, achieving visualization rehabilitation training for patients remains clinically challenging. Herein, we propose visual rehabilitation training system including iontronic meta-fabrics with skin-friendly and large matrix features, as well as high-resolution image modules for distribution of human muscle tension.

View Article and Find Full Text PDF

Kirigami Design Smart Contact Lens for Highly Sensitive Eyelid Pressure Measurement.

ACS Sens

December 2024

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Eyelid pressure is a crucial biomechanical parameter for ocular health and refractive status, yet measuring it poses challenges related to flexibility, sensitivity, and regional specificity. This study introduces a novel smart contact lens that incorporates kirigami designs and an iontronic capacitive sensing array to enhance flexibility and conformability. The unique structural composition of this device allows for precise and simultaneous monitoring of eyelid pressure in multiple regions with a high sensitivity and seamlessly fit across corneal curvatures.

View Article and Find Full Text PDF

Electrically induced insulator-to-metal transition in InP-based ion-gated transistor.

Sci Rep

December 2024

International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Miyagi, 980-8572, Japan.

With the growing awareness of energy savings and consumption for a sustainable ecosystem, the concept of iontronics, that is, controlling electronic devices with ions, has become critically important. Composite devices made of ions and solid materials have been investigated for diverse applications, ranging from energy storage to power generation, memory, biomimetics, and neuromorphic devices. In these studies, three terminal transistor configurations with liquid electrolytes have often been utilized because of their simple device structures and relatively easy fabrication processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!