Water deprivation is a life-threatening condition that engages a protective physiological response to couple osmolyte retention with potentiation of thirst. This response, typical for most mammals, safeguards against short-term water deprivation but fails in the long term. Thirteen-lined ground squirrels () use the short-term response during summer, whereas during winter, they lack thirst and survive without water for months. In this work, we show that long-term thirst suppression occurs despite hormonal and behavioral signs of a substantial fluid deficit and originates from hypoactivity of neurons in the circumventricular organs, which exhibit marked functional suppression during winter that blunts their sensitivity to thirst cues. Our work reveals a notable capacity of the evolutionarily conserved brain regions that control fluid homeostasis in mammals to enable long-term survival without water.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adp8358DOI Listing

Publication Analysis

Top Keywords

neurons circumventricular
8
circumventricular organs
8
survival water
8
thirteen-lined ground
8
ground squirrels
8
water deprivation
8
water
5
suppression neurons
4
organs enables
4
enables months-long
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!