A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nuclear Quantum Effects in Liquid Water Are Marginal for Its Average Structure but Significant for Dynamics. | LitMetric

Isotopic substitution, which can be realized in both experiment and computer simulations, is a direct approach to assess the role of nuclear quantum effects on the structure and dynamics of matter. However, the impact of nuclear quantum effects on the structure of liquid water as probed in experiment by comparing normal to heavy water has remained controversial. To settle this issue, we employ a highly accurate machine-learned high-dimensional neural network potential to perform converged coupled cluster-quality path integral simulations of liquid HO versus DO at ambient conditions. We find substantial H/D quantum effects on the rotational and translational dynamics of water, in close agreement with the experimental benchmarks. However, in stark contrast to the role for dynamics, H/D quantum effects turn out to be small, on the order of 1/1000 Å, on both average intramolecular and H-bonding structures of water. The most probable structure of water remains nearly unaffected by nuclear quantum effects, but effects on fluctuations away from average are appreciable, rendering HO substantially more "liquid" than DO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c02925DOI Listing

Publication Analysis

Top Keywords

quantum effects
24
nuclear quantum
16
liquid water
8
structure dynamics
8
effects structure
8
h/d quantum
8
effects
7
water
6
quantum
5
nuclear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!