The aryloxyamine motif is a prominent pharmacophore in drug design and development. While these biologically relevant structures could in principle be sustainably assembled from the base metal-catalyzed O-arylation of inexpensive and abundant amino alcohols with (hetero)aryl chlorides, reports of such challenging C-O bond formations with useful scope are lacking. In response, we report herein the hitherto unknown Ni-catalyzed C-O cross-coupling of N-protected amino alcohols (primary, secondary, and tertiary) with (hetero)aryl chlorides. Also presented are chemoselective sequential/telescoped C-N and C-O cross-couplings of the unprotected amino alcohol prolinol to afford an unsymmetrical diarylated product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202404352 | DOI Listing |
Nat Chem
January 2025
Department of Chemistry, Scripps Research, La Jolla, CA, USA.
Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
Mechanical pressing in Daqu production has introduced quality-affecting variations. Up to now, clear elucidation has not yet been applied to the mechanisms behind this phenomenon, and the determinants of Daqu quality are not yet completely excavated. For this reason, the physicochemical factors, enzyme activity, metabolites, and microbial communities were compared between the mechanical Daqu (MDQ) and traditional Daqu (TDQ) in this paper.
View Article and Find Full Text PDFOphthalmic Plast Reconstr Surg
January 2025
Division of Orbital and Ophthalmic Plastic Surgery, Jules Stein Eye Institute, University of California, Los Angeles, California, U.S.A.
Purpose: Phenylephrine testing prior to Müller muscle conjunctival resection has traditionally been used to predict postoperative outcomes. The purpose of this study is to determine if preoperative phenylephrine testing impacts postoperative changes in eyelid position.
Methods: In this multicenter cross-sectional cohort study, 270 eyelids of participants with involutional ptosis and levator function >12 mm who underwent Müller muscle conjunctival resection were divided into 2 comparison groups.
Rev Alerg Mex
December 2024
Master's in economics, HS Pharmacoeconomic Research, Mexico City, Mexico.
J Mol Model
January 2025
Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.
Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!