Background: Gingival mesenchymal stem cells (GMSCs) are distinctive homogenous subset of mesenchymal stem cells (MSCs), which has its development from neural ectomesenchyme along with contributions from the perifollicular mesenchyme and the dental follicle proper. GMSCs stand apart from other dental MSCs owing to their ease of accessibility and availability with incredible long culture sustainability without any tumorigenic capability, and stable telomerase activity. Their capacity to differentiate into various cell lineages and inherent therapeutic effect in chronic inflammatory diseases like colitis, rheumatoid arthritis, systemic lupus erythematous (SLE) and diabetes makes them immensely valuable. The immunomodulatory and anti-inflammatory properties aid its usage in auto immune diseases and graft versus host disease. However, the differentiation, immunomodulatory and anti-inflammatory effects of GMSCs in periodontal tissue regeneration are less explored.
Methods: In this review article, we have comprehensively compiled and described several reports on GMSCs till date, including their basic properties and isolation protocols, subpopulations, spheroid GMSCs, gingiva-derived IPSCsinduced pluripotent stem cells (iPSCs), their characterization, multilineage differentiation, and immunomodulatory properties along with precise applications in periodontal regeneration and peri-implantitis.
Results And Conclusion: Though the studies on GMSCs in periodontal regeneration lack superior quality random clinical trials, this review article still strengthens the view that GMSCs can be a newer source in periodontal tissue reconstruction/regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13770-024-00676-8 | DOI Listing |
Stem Cells Int
December 2024
Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
Burns are a global public health issue and a major cause of disability and death around the world. Stem cells, which are the undifferentiated cells with the potential for indefinite proliferation and multilineage differentiation, have the ability to replace injured skin and facilitate the wound repair process through paracrine mechanisms. In light of this, the present study aims to conduct a bibliometric analysis in order to identify research hotspots of stem cell-related burns and assess global research tendencies.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that bind to the PIWI subclass of the Argonaute protein family and are essential for maintaining germline integrity. Initially discovered in , PIWI proteins safeguard piRNAs, forming ribonucleoprotein (RNP) complexes, crucial for regulating gene expression and genome stability, by suppressing transposable elements (TEs). Recent insights revealed that piRNAs and PIWI proteins, known for their roles in germline maintenance, significantly influence mRNA stability, translation and retrotransposon silencing in both stem cells and bodily tissues.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
Introduction: T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
Most blood cells derive from hematopoietic stem cells (HSCs), originating from endothelial cells. The induction of HSCs from endothelial cells occurs during mid-gestation, and research has revealed multiple steps in this induction process. Hemogenic endothelial cells emerge within the endothelium, transition to hematopoietic cells (pre-HSCs), and subsequently mature into functional HSCs.
View Article and Find Full Text PDFFront Physiol
December 2024
Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
Background: Skeletal muscle atrophy significantly affects quality of life and has socio-economic and health implications. This study evaluates the effects of entacapone (ENT) on skeletal muscle atrophy linked with oxidative stress and proteolysis.
Methods: C2C12 cells were treated with dexamethasone (Dex) to simulate muscle atrophy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!