Immunohistochemical characterization of interstitial cells and their spatial relationship to motor neurons within the mouse esophagus.

Cell Tissue Res

Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA.

Published: November 2024

Interstitial cells of Cajal (ICC) and PDGFRα cells regulate smooth muscle motility in the gastrointestinal (GI) tract, yet their function in the esophagus remains unknown. The mouse esophagus has been described as primarily skeletal muscle; however, ICC  have been identified in this region. This study characterizes the distribution of skeletal and smooth muscle cells (SMCs) and their spatial relationship to ICC, PDGFRα cells, and intramuscular motor neurons in the mouse esophagus. SMCs occupied approximately 30% of the distal esophagus, but their density declined in more proximal regions. Similarly, ANO1 intramuscular ICC (ICC-IM) were distributed along the esophagus, with density decreasing proximally. While ICC-IM were closely associated with SMCs, they were also present in regions of skeletal muscle. Intramuscular, submucosal, and myenteric PDGFRα cells were densely distributed throughout the esophagus, yet only intramuscular PDGFRα cells in the lower esophageal sphincter (LES) and distal esophagus expressed SK3. ICC-IM and PDGFRα cells were closely associated with intramuscular nNOS, VIP, VAChT, and TH neurons and GFAP cells resembling intramuscular enteric glia. These findings suggest that ICC-IM and PDGFRα cells may have roles in regulating esophageal motility due to their close proximity to each other and to skeletal muscle and SMCs, although further functional studies are needed to explore their role in this region. The mixed muscular composition and presence of interstitial cells in the mouse distal esophagus is anatomically similar to the transitional zone found in the human esophagus, and therefore, motility studies in the mouse may be translatable to humans.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-024-03929-zDOI Listing

Publication Analysis

Top Keywords

pdgfrα cells
24
interstitial cells
12
mouse esophagus
12
skeletal muscle
12
distal esophagus
12
cells
11
esophagus
10
spatial relationship
8
motor neurons
8
neurons mouse
8

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!