Nucleosomes are the fundamental units of DNA compaction, playing a key role in modulating gene expression. As such, they are widely studied through both experimental and computational methods. While atomic force microscopy (AFM) is a powerful tool for visualizing and characterizing both canonical and modified nucleosomes, it relies on nucleosome interactions with mica surfaces. These interactions occur through cations adsorbed on the negatively charged mica, but the specific influences of monovalent and divalent cations on nucleosome adsorption remain unclear. In this study, we used molecular dynamics simulations to investigate how monovalent potassium ions and divalent magnesium ions affect nucleosome binding to mica surfaces. We also explored the impact of pretreated mica surfaces on nucleosome binding and structure. Our findings reveal that nucleosome-mica interactions depend on the type of cations present, which leads to distinct effects on nucleosome structure. Notably, nucleosomes bind effectively to mica surfaces in the presence of potassium ions with minimal structural perturbations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c04223DOI Listing

Publication Analysis

Top Keywords

mica surfaces
16
nucleosome-mica interactions
8
molecular dynamics
8
dynamics simulations
8
potassium ions
8
nucleosome binding
8
nucleosome
5
mica
5
influence ionic
4
ionic environment
4

Similar Publications

Tuning the nanostructure and tribological properties of a non-ionic deep eutectic solvent with water addition.

J Colloid Interface Sci

December 2024

School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:

Hypothesis: The addition of water to a non-ionic N-oxide deep eutectic solvent(DES) composed of phenylacetic acid (PhAA) and N-dodecylmorpholine-N-oxide(MO-12) in a 1:1 M ratio(PhAA/MO-12) will promote interfacial nanostructure formation due to increased proton transfer and solvophobic interactions, leading to reduced friction.

Experiments: The interfacial structure and friction of PhAA/MO-12 with water content up to 41.9 wt% were investigated at mica surfaces.

View Article and Find Full Text PDF

Road properties of cement-phosphogypsum-red clay under dry and wet cycles.

PLoS One

December 2024

School of Civil Engineering, Guizhou University, Guiyang, Guizhou Province, China.

In this paper, the road performance and mechanism of cement-phosphogypsum-red clay (CPRC) under dry and wet cycling were systematically investigated using 5% cement as curing agent, the mass ratio of phosphogypsum: red clay = 1:1, and 5% SCA-2 as water stabilizer. The road performance of dry and wet cycle mix was verified with the National Highway G210 Duyun Yangan to Yingshan Highway Reconstruction and Expansion Project as a test road to provide a scientific basis for the application of cement-phosphogypsum-red clay on roads. The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter.

View Article and Find Full Text PDF

Nivolumab plus ipilimumab (aCTLA-4/aPD-1) combination therapy has significantly improved clinical outcomes in patients with metastatic melanoma, with 50%-60% of patients responding to treatment, but predictors of response are poorly characterized. We hypothesized that circulating cytokines and peripheral white blood cells may predict response to therapy and evaluated 15 cytokines and complete blood counts (CBC with differentials) from 89 patients with advanced melanoma treated with combination therapy from three points in time: pre-treatment, one month and approximately three months after starting therapy. Clinical endpoints evaluated included durable clinical benefit (DCB), progression-free survival (PFS), and overall survival (OS).

View Article and Find Full Text PDF

Coordinative Self-assembly of π-Electron Magnetic Porphyrins.

Angew Chem Int Ed Engl

December 2024

Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain.

π-Electron magnetic compounds on surfaces have emerged as a powerful platform to interrogate spin interactions at the atomic scale, with great potential in spintronics and quantum technologies. A key challenge is organizing these compounds over large length scales, while elucidating their resulting magnetic properties. Herein, we offer a relevant contribution toward this objective, which consists of using on-surface synthesis coupled with coordination chemistry to promote the self-assembly of π-electron magnetic porphyrin species.

View Article and Find Full Text PDF

Control over the orientation of polycyclic aromatic dyes in thin films is paramount to tailoring their optical, electronic, and mechanical properties. Their supramolecular assembly in films is tuned here by converting the macrocyclic dyes to large amphiphiles. Two octaalkythio-substituted tetraazaporphyrins (TAPs) with one 5-carboxypentyl and one pentyl or dodecyl chain per pyrrole ring were synthesized as statistical mixtures of four regioisomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!