Full Conjugation in a Polymer with Non-conjugated Piperazine-2,5-dione Units via Energy-minimized Lactam-to-Lactim Tautomerization Enables Water-gated Transistor Fluoride Sensors.

Angew Chem Int Ed Engl

Department of Chemical Engineering, Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada.

Published: November 2024

AI Article Synopsis

  • - Piperazine-2,5-dione (GA) is being used to create a new type of conjugated polymer, PIDHPTT, which is aimed at improving chemical sensing in organic electronics.
  • - Within the polymer, GA changes from a non-conjugated form to a conjugated form, driven by energy minimization and enhanced π-conjugation—this phenomenon is noted as a "long-range vinylogous effect" that has only been seen in small molecules before.
  • - PIDHPTT shows strong interactions with fluoride ions, leading to notable changes in optical and electronic properties, and demonstrates high sensitivity and selectivity in a water-gated field-effect transistor, highlighting its potential for practical applications in chemical

Article Abstract

Piperazine-2,5-dione (glycine anhydride, GA) has recently emerged as a valuable precursor for high-performance π-conjugated polymer semiconductors in organic electronics. We utilized GA to design a novel bisindolin-dihydropiperazine (IDHP)-based conjugated polymer, PIDHPTT, for aqueous chemical sensing. In the isatin-flanked monomer, GA exists as a non-conjugated lactam (DHP-NH) but converts to a conjugated lactim (DHP-OH) form within the polymer. Density functional theory (DFT) calculations show that this conversion is driven by energy minimization via extended π-conjugation. Neighboring DHP units in the lactim form facilitate this process through π-bridges, demonstrating a vinylogous effect, which has previously only been observed in small molecules. This is the first study to report such a long-range vinylogous effect in a polymer due to the collective synergy of numerous functional groups. The OH groups in the lactim DHP interact more strongly with fluoride ions than other halides. PIDHPTT exhibits significant changes in optical absorption, electrochemical impedance, and charge transport in response to fluoride ions, which differ from responses to other halides. A water-gated organic field-effect transistor based on PIDHPTT shows excellent sensitivity and selectivity for fluoride ions, demonstrating the potential of this polymer design for chemical sensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202419314DOI Listing

Publication Analysis

Top Keywords

fluoride ions
12
chemical sensing
8
polymer
6
full conjugation
4
conjugation polymer
4
polymer non-conjugated
4
non-conjugated piperazine-25-dione
4
piperazine-25-dione units
4
units energy-minimized
4
energy-minimized lactam-to-lactim
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!