The review covering the development of capillary electrophoresis with capacitively coupled contactless conductivity detection from 2020 to 2024 is the latest in a series going back to 2004. The article considers applications employing conventional capillaries and planar lab-on-chip devices as well as fundamental and technical developments of the detector and complete electrophoresis instrumentation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.202400217DOI Listing

Publication Analysis

Top Keywords

contactless conductivity
8
conductivity detection
8
2020 2024
8
detection capillary
4
capillary electrophoresis-developments
4
electrophoresis-developments 2020
4
2024 review
4
review covering
4
covering development
4
development capillary
4

Similar Publications

Magneto-responsiveness in living organisms, exemplified by migratory birds navigating vast distances, offers inspiration for soft robots and human-computer interfaces. However, achieving both high magneto-responsiveness and resilient mechanical properties in synthetic materials has been challenging. Here, we develop magneto-iono-elastomers (MINEs), combining exceptional magnetization [2.

View Article and Find Full Text PDF

HealthPass: a contactless check-in and adaptive access control system for lowering cluster infection risk in public health crisis.

Front Public Health

December 2024

Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, China.

Introduction: Ensuring effective measures against the spread of the virus is paramount for educational institutions and workplaces as they resume operations amidst the ongoing public health crisis. A touchless and privacy-conscious check-in procedure for visitor assessment is critical to safeguarding venues against potential virus transmission.

Methods: In our study, we developed an interaction-free entry system featuring anonymous visitors who voluntarily provide data.

View Article and Find Full Text PDF

A client-server based recognition system: Non-contact single/multiple emotional and behavioral state assessment methods.

Comput Methods Programs Biomed

December 2024

School of Communication and Information Engineering, Shanghai University, 200444, Shanghai, China. Electronic address:

Background And Objectives: In the current global health landscape, there is an increasing demand for rapid and accurate assessment of mental states. Traditional assessment methods typically rely on face-to-face interactions, which are not only time-consuming but also highly subjective. Addressing this issue, this study aims to develop a client-server-based, non-contact multimodal emotion and behavior recognition system to enhance the efficiency and accuracy of mental state assessments.

View Article and Find Full Text PDF

Vital signs such as heart rate (HR) and respiration rate (RR) are essential physiological parameters that are routinely used to monitor human health and bodily functions. They can be continuously monitored through contact or contactless measurements performed in the home or a hospital. In this study, a contactless Doppler radar W-band sensing system was used for short-range, contactless vital sign estimation.

View Article and Find Full Text PDF

High-Brightness Color-Tunable AC-Driven Quantum Dot Light-Emitting Diodes for Integrated Passive High-Electric-Field Contactless Detection.

ACS Appl Mater Interfaces

December 2024

Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China.

This work explores the carrier recombination dynamics of AC-driven quantum dot (QD) light-emitting diodes (AC-QLEDs) and proposes their application in the field of electric field contactless detection. Different sequences of green QD (GQD)/red QD (RQD) bilayer thin films as the emission layer of AC-QLEDs were fabricated via film transfer printing to ensure the complete morphology of each layer. AC-QLEDs with the emission layer as the sequence of GQD + RQD (GR-QLEDs) show a significantly enhanced carrier recombination efficiency due to its stable energy level structure, achieving the highest peak brightness ever recorded for vertically emitting brightness of 1648.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!