AI Article Synopsis

  • Sulfated cyclodextrins are negatively charged molecules used in capillary electrophoresis for separating chiral compounds, but their effective charge can be lower than expected due to counterion binding.
  • This study used capillary isotachophoresis and capillary zone electrophoresis to measure the effective charge numbers and ionic mobilities of two types of sulfated cyclodextrins: single isomer and randomly highly sulfated.
  • Results showed that while the effective charge numbers of single isomer sulfated cyclodextrins closely matched their sulfate groups, the randomly highly sulfated versions had their effective charges reduced by 22.2%-27.8%, leading to lower ionic mobilities for the single isomer

Article Abstract

Sulfated cyclodextrins (CDs) are multiply negatively charged molecules widely used as chiral selectors in capillary electrophoresis (CE). In some of their applications, the effective charge numbers of their molecules were observed to be lower than the numbers of the attached sulfated groups due to strong binding of counterions. However, degree of reduction of the theoretical charge was not quantified. For that reason, in this study, capillary isotachophoresis (CITP) and capillary zone electrophoresis (CZE) were applied for the determination of the effective charge numbers and actual ionic mobilities of two kinds of sulfated CDs: single isomer sulfated α-, β-, and γ-CDs (SI-CDs) and randomly highly sulfated α-, β-, and γ-CDs (HS-CDs). The effective charge numbers of the SI-CDs and HS-CDs were determined from the length of their ITP zones, the ionic mobilities determined by CZE, and molar concentrations of their solutions applied for CITP analysis, and from the same parameters of reference compounds, formic acid for SI-CDs and dichloroacetic acid for HS-CDs. The determined effective charge numbers of the SI-CDs were equal to or only slightly lower than the numbers of sulfate groups in their molecules but the effective charge numbers of randomly HS-CDs were significantly (22.2%-27.8%) reduced as compared to the average numbers of sulfate groups in their molecules. In accordance with a lower number of sulfate groups in SI-CDs than in HS-CDs, the absolute values of the actual ionic mobilities of SI-CDs (35.5-37.5) × 10 m V s were lower than those of HS-CDs (43.5-44.1) × 10 m V s.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.202400207DOI Listing

Publication Analysis

Top Keywords

effective charge
24
charge numbers
24
ionic mobilities
16
sulfate groups
12
numbers
9
determination effective
8
single isomer
8
randomly highly
8
highly sulfated
8
sulfated cyclodextrins
8

Similar Publications

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

Combining Deep-UV second harmonic generation spectroscopy with molecular simulations, we confirm and quantify the specific adsorption of guanidinium cations to the air-water interface. Using a Langmuir analysis of measurements at multiple concentrations, we extract the Gibbs free energy of adsorption, finding it larger than typical thermal energies. Molecular simulations clarify the role of polarizability in tuning the thermodynamics of adsorption, and establish the preferential parallel alignment of guanidinium at the air-water interface.

View Article and Find Full Text PDF

Tuning Isomerism Effect in Organic Bulk Additives Enables Efficient and Stable Perovskite Solar Cells.

Nanomicro Lett

January 2025

The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells. The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses. However, how these groups synergistically affect the enhancement beyond passivation is still unclear.

View Article and Find Full Text PDF

Mechanistic Understanding of the pH-Dependent Oxygen Reduction Reaction on the Fe-N-C Surface: Linking Surface Charge to Adsorbed Oxygen-Containing Species.

ACS Appl Mater Interfaces

January 2025

Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

The Fe-N-C catalyst, featuring a single-atom Fe-N configuration, is regarded as one of the most promising catalytic materials for the oxygen reduction reaction (ORR). However, the significant activity difference under acidic and alkaline conditions of Fe-N-C remains a long-standing puzzle. In this work, using extensive ab initio molecular dynamics (AIMD) simulations, we revealed that pH conditions influence ORR activity by tuning the surface charge density of the Fe-N-C surface, rather than through the direct involvement of HO or OH ions.

View Article and Find Full Text PDF

Skin Hydration by Natural Moisturizing Factors, a Story of H-Bond Networking.

J Phys Chem B

January 2025

INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France.

Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!