Background: The association between gut microbiota (GM) and Parkinson's disease (PD) has been well established, but whether there is a causal relationship between the two and whether inflammatory cytokines (ICs) act as mediators remain unclear.
Methods: We utilized the summary databases of large-scale genome-wide association studies (GWAS) conducting Mendelian randomization (MR) analyses to investigate the causal relationships between GM, ICs, and PD. The inverse-variance weighted (IVW) method was primarily used to identify GM and ICs associated with PD and to examine the mediating role of ICs, supplemented by MR Egger and weighted median.
Results: Through MR analysis, we identified three positive causal relationships and six negative causal relationships between GM and PD. Additionally, there were three positive associations and five negative associations between ICs and PD. However, after adjusting for FDR, none of these associations were significant. In reverse MR analysis, we also found causal relationships between PD and various GM and ICs. Further, two-step MR analysis indicated that the negative impact of phylum Actinobacteria on PD may be mediated through Fms-related tyrosine kinase 3 ligand levels.
Conclusion: This study strengthens the link between GM and the risk of PD, while also revealing the potential mediating role of ICs in the causal relationships between these factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603428 | PMC |
http://dx.doi.org/10.1002/brb3.70169 | DOI Listing |
Alzheimers Dement
December 2024
GSK R&D, Stevenage, Hertfordshire, United Kingdom.
Background: Genetic variants in GRN, the gene encoding progranulin, are causal for or are associated with the risk of multiple neurodegenerative diseases. Modulating progranulin has been considered as a therapeutic strategy for neurodegenerative diseases including Frontotemporal Dementia (FTD) and Alzheimer's Disease (AD). Here, we integrated genetics with proteomic data to determine the causal human evidence for the therapeutic benefit of modulating progranulin in AD.
View Article and Find Full Text PDFBackground: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.
Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.
Alzheimers Dement
December 2024
Case Western Reserve University, Cleveland, OH, USA.
Background: Traumatic Brain Injury (TBI) is one of the most common nonheritable causes of Alzheimer's disease (AD). However, there is lack of effective treatment for both AD and TBI. We posit that network-based integration of multi-omics and endophenotype disease module coupled with large real-world patient data analysis of electronic health records (EHR) can help identify repurposable drug candidates for the treatment of TBI and AD.
View Article and Find Full Text PDFBackground: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Alzheimers Dement
December 2024
Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China.
Background: Individuals with type 2 diabetes mellitus (T2DM) face an increased risk of dementia. Recent discoveries indicate that SGLT2 inhibitors, a newer class of anti-diabetic medication, exhibit beneficial metabolic effects beyond glucose control, offering a potential avenue for mitigating the risk of Alzheimer's disease (AD). However, limited evidence exists regarding whether the use of SGLT2 inhibitors effectively reduces the risk of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!