Depth-of-Discharge Dependent Capacity Decay Induced by the Accumulation of Oxidized Lattice Oxygen in Li-Rich Layered Oxide Cathode.

Angew Chem Int Ed Engl

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

Published: November 2024

More and more basic practical application scenarios have been gradually ignored/disregarded, in fundamental research on rechargeable batteries, e.g. assessing cycle life under various depths-of-discharge (DODs). Herein, although benefit from the additional energy density introduced by anionic redox, we critically revealed that lithium-rich layered oxide (LRLO) cathodes present anomalously poor capacity retention at low-DOD cycling, which is essentially different from typical layered cathodes (e.g. NCM), and pose a formidable impediment to the practical application of LRLO. We systemically demonstrated that DOD-dependent capacity decay is induced by the anionic redox and accumulation of oxidized lattice oxygen (O). Upon low-DOD cycling, the accumulation of O and the persistent presence of vacancies in the transition metal (TM) layer intensified the in-plane migration of TM, exacerbating the expansion of vacancy clusters, which further facilitated detrimental out-of-plane TM migration. As a result, the aggravated structural degradation of LRLO at low-DOD impeded reversible Li intercalation, resulting in rapid capacity decay. Furthermore, prolonged accumulation of O persistently corroded the electrode-electrolyte interface, especially negative for pouch-type full-cells with the shuttle effect. Once the "double-edged sword" effect of anionic redox being elucidated under practical condition, corresponding modification strategies/routes would become distinct for accelerating the practical application of LRLO.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202419909DOI Listing

Publication Analysis

Top Keywords

capacity decay
12
practical application
12
anionic redox
12
decay induced
8
accumulation oxidized
8
oxidized lattice
8
lattice oxygen
8
layered oxide
8
low-dod cycling
8
application lrlo
8

Similar Publications

N, S-Rich SEI Derived From Continuously-Releasing Additive for Anode-Free Lithium-Metal Batteries in Commercial Carbonate Electrolyte.

Small

December 2024

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

Featured with the highest possible energy density, anode-free lithium-metal batteries (AFBs) are still challenged by the fast capacity decay, especially for the ones operated in commercial carbonate electrolytes, which can be ascribed to the poor stability and continual broken/formation of the solid-electrolyte interface (SEI) formed on the anode side. Here, sacrificial additives, which have low solubility in carbonate electrolytes and can be continuously released, are proposed for AFBs. The sacrificial and continuously-releasing feature gifts the additives the capability to form and heal the SEI during the long-term cycling process, thus minimizing the loss of active Li and enabling the AFLMBs with high loading LiNiCoMnO (21.

View Article and Find Full Text PDF

Polysulfide shuttling and dendrite growth are two primary challenges that significantly limit the practical applications of lithium-sulfur batteries (LSBs). Herein, a three-in-one strategy for a separator based on a localized electrostatic field is demonstrated to simultaneously achieve shuttle inhibition of polysulfides, catalytic activation of the Li-S reaction, and dendrite-free plating of lithium ions. Specifically, an interlayer of polyacrylonitrile nanofiber (PNF) incorporating poled BaTiO (PBTO) particles and coating with a layer of MoS (PBTO@PNF-MoS) is developed on the PP separator.

View Article and Find Full Text PDF

Expandable Fast Li-Ion Diffusion Network of Li-Rich Mn-Based Oxides via Single-Layer LiCo(Ni)O Segregation.

Adv Mater

December 2024

Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.

Li-rich Mn-based cathode materials exhibit a remarkable reversible specific capacity exceeding 250 mAh g, positioning them as the preferred choice for the next generation of high-energy density lithium-ion battery cathode materials. However, their inferior rate and cycling performance pose significant challenges. In this context, a Li-rich material incorporating an expanded fast Li-ion diffusion network has been successfully synthesized.

View Article and Find Full Text PDF

Fluorination from Surface to Bulk Stabilizing High Nickel Cathode Materials with Outstanding Electrochemical Performance.

Angew Chem Int Ed Engl

December 2024

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China.

High nickel layered oxides provide high energy densities as cathodes for next-generation batteries. However, critical issues such as capacity fading and voltage decay, which derive from labile surface reactivity and phase transition, especially under high-rate high-voltage conditions, prevent their commercialization. Here we propose a fluorination strategy to simultaneously introduce F atoms into oxygen layer and create a F aggregated interface.

View Article and Find Full Text PDF

May Antarctic plants grow on Martian and Lunar soil simulants under terrestrial conditions?

An Acad Bras Cienc

December 2024

Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil.

Extremophile organisms have been largely studied in Astrobiology. Among them, two antarctic plants emerge as good candidates to become colonizers of other celestial bodies, such as Mars and the Moon. The present research aimed to evaluate survival and growing capacity of Sanionia uncinata and Colobanthus quitensis on Martian (MGS-1) and Lunar (LMS-1) regolith simulants, under terrestrial conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!