A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DYNAMICS OF AN LPAA MODEL FOR GROWTH: INSIGHTS INTO POPULATION CHAOS. | LitMetric

AI Article Synopsis

  • Flour beetles have been used in ecological research to model population dynamics, particularly through the well-studied LPA (larvae-pupae-adult) model.
  • Researchers explored whether chaos is a natural behavior of flour beetle populations, adapting the LPA model to account for different adult stages and cannibalism.
  • Their findings indicate that chaos can occur but is uncommon under typical experimental conditions, suggesting it is often triggered by environmental factors rather than being an inherent trait of the beetles.

Article Abstract

Flour beetles (genus ) have long been used as a model organism to understand population dynamics in ecological research. A rich and rigorous body of work has cemented flour beetles' place in the field of mathematical biology. One of the most interesting results using flour beetles is the induction of chaos in a laboratory beetle population, in which the well-established LPA (larvae-pupae-adult) model was used to inform the experimental factors which would lead to chaos. However, whether chaos is an intrinsic property of flour beetles remains an open question. Inspired by new experimental data, we extend the LPA model by stratifying the adult population into newly emerged and mature adults and considering cannibalism as a function of mature adults. We fit the model to longitudinal data of larvae, pupae, and adult beetle populations to demonstrate the model's ability to recapitulate the transient dynamics of flour beetles. We present local and global stability results for the trivial and positive steady states and explore bifurcations and limit cycles numerically. Our results suggest that while chaos is a possibility, it is a rare phenomenon within realistic ranges of the parameters obtained from our experiment, and is likely induced by environmental changes connected to media changes and population censusing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601799PMC

Publication Analysis

Top Keywords

flour beetles
16
mature adults
8
model
5
population
5
chaos
5
flour
5
dynamics lpaa
4
lpaa model
4
model growth
4
growth insights
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!