AI Article Synopsis

  • The article discusses the challenges of treating intrahepatic cholangiocarcinoma (iCCA), as most patients do not respond well to existing therapies and highlights ongoing efforts to find new molecular targets.
  • It focuses on a study by Tang which examines the role of the PSMD6 gene in iCCA cells, finding it crucial for cell proliferation and overexpressed in iCCA tissues, although the study has limitations regarding its methods and insights into mechanisms.
  • The editorial also mentions recent advancements in targeted drug therapies and immunotherapies for iCCA, and underscores the potential of CRISPR technology and other computational methods in cancer research.

Article Abstract

In this editorial we comment on the article by Tang published in the recent issue of . Drug therapy of intrahepatic cholangiocarcinoma (iCCA) poses an enormous challenge since only a small proportion of patients demonstrate beneficial responses to therapeutic agents. Thus, there has been a sustained search for novel molecular targets for iCCA. The study by Tang evaluated the role of 26S proteasome non-ATPase regulatory subunit 6 (PSMD6), a 19S regulatory subunit of the proteasome, in human iCCA cells and specimens. The authors employed clustered regularly interspaced short palindromic repeat (CRISPR) knockout screening technology integrated with the computational CERES algorithm, and analyzed the human protein atlas (THPA) database and tissue microarrays. The results show that is a gene essential for the proliferation of 17 iCCA cell lines, and PSMD6 protein was overexpressed in iCCA tissues without a significant correlation with the clinicopathological parameters. The authors conclude that PSMD6 may play a promoting role in iCCA. The major limitations and defects of this study are the lack of detailed information of CRISPR knockout screening, experiments, and a discussion of plausible mechanistic cues, which, therefore, dampen the significance of the results. Further studies are required to verify PSMD6 as a molecular target for developing novel therapeutics for iCCA. In addition, the editorial article summarizes the latest advances in molecular targeted drugs and recently emerging immunotherapy in the clinical management of iCCA, development of proteasome inhibitors for cancer therapy, and advantages of CRISPR screening technology, computational methods, and THPA database as experimental tools for fighting cancer. We hope that these comments may provide some clues for those engaged in the field of basic and clinical research into iCCA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586744PMC
http://dx.doi.org/10.4254/wjh.v16.i11.1219DOI Listing

Publication Analysis

Top Keywords

regulatory subunit
12
icca
9
26s proteasome
8
proteasome non-atpase
8
non-atpase regulatory
8
molecular target
8
crispr knockout
8
knockout screening
8
screening technology
8
thpa database
8

Similar Publications

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases.

Clin Rev Allergy Immunol

December 2024

Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.

The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention.

View Article and Find Full Text PDF

Background: Mediterranean diets may reduce Alzheimer's disease (AD) risk and preserve cognitive function relative to Western diets by protecting against inflammation. In a long term controlled randomized trial of Mediterranean vs. Western diet consumption in cynomolgus macaques (Macaca fascicularis), difficult to conduct in humans, we found significant anti-inflammatory effects of Mediterranean diet on circulating monocyte and brain temporal cortex transcriptional profiles.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Northwestern University, Chicago, IL, USA.

Background: Much attention has been paid to the role of the perenchymal brain immune response in Alzheimer's disease (AD). Yet, the peripheral immune system in AD has not been thoroughly studied with modern sequencing methods.

Method: Here, we used a combination of single-cell sequencing strategies, including assay for transposase-accessible chromatin and RNA sequencing, to investigate the epigenetic and transcriptional alterations to the AD peripheral immune system.

View Article and Find Full Text PDF

Backgrounds: Adapter proteins (APs) complex is a class of heterotetrameric complexes comprising of 4-subunits with important regulatory functions in eukaryotic cell membrane vesicle trafficking. Foxtail millet (Setaria italica L.) is a significant C model plant for monocotyledon studies, and vesicle trafficking may plays a crucial role in various life activities related to growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!