It is well documented that immunosuppression in chickens increases the risk of secondary infections and immunodeficiencies, resulting in significant financial setbacks for the poultry sector. It is crucial to determine if polysaccharide (LBP) can counteract immune suppression in young chickens, considering its known ability to modulate immune responses. The aim of this study was to investigate the antagonistic effect and mechanism of LBP on immunosuppression in chicks. A total of 200 seven-day-old Hyland Brown laying hens were used to develop an immunosuppression model and to investigate the optimal time of use and optimal dosage of LBP. A further 120 seven-day-old Hyland Brown laying hens were used to investigate the mechanism of antagonism of LBP against immunosuppression at the optimal time and dosage. The results demonstrated that LBP significantly elevated body weight, spleen index, and peripheral lymphocyte transformation rate, and ameliorated pathological spleen damage in immunosuppressed chickens. A total of 178 differential genes were significantly upregulated following LBP intervention, with a significant enrichment in immune-related pathways, including the chemokine signalling pathway, the C-type lectin receptor signalling pathway, the B-cell receptor signalling pathway, platelet activation, natural killer cell-mediated cytotoxicity, and Th1 and Th2 cell differentiation. A total of 20 different metabolites were identified by metabolomics, which were mainly involved in vitamin metabolism, lipid metabolism, nucleic acid metabolism and amino acid metabolism. The integrated examination of transcriptomic and metabolomic data revealed that the glycerophospholipid metabolic pathway stands out as the most significant among all metabolic pathways. The results demonstrated that LBP regulate the immune system in a multi-pathway and multi-target way.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599638 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1486739 | DOI Listing |
Differentiation
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China. Electronic address:
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints.
View Article and Find Full Text PDFBr J Pharmacol
December 2024
Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
Background And Purpose: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert cardiovascular benefits in diabetic patients, but the underlying mechanisms remain incompletely understood. Semaglutide, a novel long-acting GLP-1RA, has shown a reduced risk of cardiovascular events. Based on these results, we investigated the therapeutic potential of semaglutide in diabetic cardiomyopathy and sought to elucidate the underlying mechanisms.
View Article and Find Full Text PDFInflammopharmacology
December 2024
Department of Zoology, Government College University, Faisalabad, 38000, Pakistan.
Berberine (BBR), an alkaloid derivative mostly found in Oregon grapes and barberry shoots, has several medical properties, including anti-microbial, anti-tumorigenic, and anti-inflammatory properties. As such, it is a superior alternative to presently recommended medications. From previous researches, which showed that BBR has anti-arthritic qualities by blocking a number of inflammatory signalling pathways.
View Article and Find Full Text PDFMol Cancer
December 2024
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy.
View Article and Find Full Text PDFHum Exp Toxicol
December 2024
Department of neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China. Hubei Sizhen Laboratory, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China.
Introduction: The incidence of cerebral ischemia-reperfusion injury (I/R) is complex which seriously threatens the life safety of patients. Neither its prevention nor its treatment has been successful so far. Proteins that bind to DNA and belong to the C2/H2 zinc finger family are known as Krüppel-like factors (KLFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!