A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting adverse drug event using machine learning based on electronic health records: a systematic review and meta-analysis. | LitMetric

Introduction: Adverse drug events (ADEs) pose a significant challenge in current clinical practice. Machine learning (ML) has been increasingly used to predict specific ADEs using electronic health record (EHR) data. This systematic review provides a comprehensive overview of the application of ML in predicting specific ADEs based on EHR data.

Methods: A systematic search of PubMed, Web of Science, Embase, and IEEE Xplore was conducted to identify relevant articles published from the inception to 20 May 2024. Studies that developed ML models for predicting specific ADEs or ADEs associated with particular drugs were included using EHR data.

Results: A total of 59 studies met the inclusion criteria, covering 15 drugs and 15 ADEs. In total, 38 machine learning algorithms were reported, with random forest (RF) being the most frequently used, followed by support vector machine (SVM), eXtreme gradient boosting (XGBoost), decision tree (DT), and light gradient boosting machine (LightGBM). The performance of the ML models was generally strong, with an average area under the curve (AUC) of 76.68% ± 10.73, accuracy of 76.00% ± 11.26, precision of 60.13% ± 24.81, sensitivity of 62.35% ± 20.19, specificity of 75.13% ± 16.60, and an F1 score of 52.60% ± 21.10. The combined sensitivity, specificity, diagnostic odds ratio (DOR), and AUC from the summary receiver operating characteristic (SROC) curve using a random effects model were 0.65 (95% CI: 0.65-0.66), 0.89 (95% CI: 0.89-0.90), 12.11 (95% CI: 8.17-17.95), and 0.8069, respectively. The risk factors associated with different drugs and ADEs varied.

Discussion: Future research should focus on improving standardization, conducting multicenter studies that incorporate diverse data types, and evaluating the impact of artificial intelligence predictive models in real-world clinical settings.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024565842, identifier CRD42024565842.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600142PMC
http://dx.doi.org/10.3389/fphar.2024.1497397DOI Listing

Publication Analysis

Top Keywords

machine learning
12
specific ades
12
adverse drug
8
electronic health
8
systematic review
8
predicting specific
8
associated drugs
8
drugs ades
8
gradient boosting
8
ades
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!