The primary objective of this investigation is to empirically assess a new vapor compression cycle while employing phase change material (PCM) energy storage. During off-peak periods, the PCM undergoes charging, and during on-peak hours, it is discharged to cool the refrigerant entering the condenser, thereby enhancing the condenser's overall performance. In contrast to previous studies that exclusively examined the charging or discharging processes of air conditioning (AC) units, this research delves into the entire 24-h charge and discharge cycle. The proposed system is subjected to testing under identical conditions, both without PCM (conventional mode) and with a PCM storage tank, throughout a 24-h period. The PCM storage tank, which utilizes water as its phase change medium, possesses a volume of approximately 300 L and starts at an initial temperature of 25 °C. The outcomes of the study demonstrate notable improvements when incorporating the PCM storage tank. Specifically, the daily coefficient of performance (COP) increases by approximately 7 %, rising from 2.17 to 2.33. Additionally, it leads to a reduction in both the daily available cooling load and daily compressor energy consumption, with decreases of approximately 3.7 % (from 58.4 to 56.2 kWh) and 10.3 % (from 26.9 to 24.1 kWh), respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600017PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e40259DOI Listing

Publication Analysis

Top Keywords

phase change
12
pcm storage
12
storage tank
12
vapor compression
8
pcm
6
experimental assessment
4
assessment phase
4
change materials
4
materials vapor
4
compression refrigeration
4

Similar Publications

Acting as the interface between the human body and its environment, clothing is indispensable in human thermoregulation and even survival under extreme environmental conditions. Development of clothing textiles with prolonged passive temperature-adaptive thermoregulation without external energy consumption is much needed for protection from thermal stress and energy saving, but very challenging. Here, a temperature-adaptive thermoregulation filament (TATF) consisting of thermoresponsive vacuum cavities formed by the temperature-responsive volume change of the material confined in the cellular cores of the filament is proposed.

View Article and Find Full Text PDF

Background: Psilocybin therapy (PT) produces rapid and persistent antidepressant effects in major depressive disorder (MDD). However, the long-term effects of PT have never been compared with gold-standard treatments for MDD such as pharmacotherapy or psychotherapy alone or in combination.

Methods: This is a 6-month follow-up study of a phase 2, double-blind, randomised, controlled trial involving patients with moderate-to-severe MDD.

View Article and Find Full Text PDF

Background: Therapeutic advancements for the polyglutamine diseases, particularly spinocerebellar degeneration, are eagerly awaited. We evaluated the safety, tolerability, and therapeutic effects of L-arginine, which inhibits the conformational change and aggregation of polyglutamine proteins, in patients with spinocerebellar ataxia type 6 (SCA6).

Methods: A multicenter, randomized, double-blind, placebo-controlled phase 2 trial (clinical trial ID: AJA030-002, registration number: jRCT2031200135) was performed on 40 genetically confirmed SCA6 patients enrolled between September 1, 2020, and September 30, 2021.

View Article and Find Full Text PDF

Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature.

View Article and Find Full Text PDF

Background: Low-density lipoprotein cholesterol (LDL-C) has been determined as an established risk factor for acute ischemic stroke (AIS). Despite the recommendation for in-hospital initiation of high-intensity statin therapy in AIS patients, achieving the desired target LDL-C levels remains challenging. Evolocumab, a highly effective and quickly acting agent for reducing LDL-C levels, has yet to undergo extensively exploration in the acute phase of AIS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!