A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uncovering hidden gene-trait patterns through biclustering analysis of the UK Biobank. | LitMetric

Uncovering hidden gene-trait patterns through biclustering analysis of the UK Biobank.

bioRxiv

Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Published: November 2024

The growing availability of genome-wide association studies (GWAS) and large-scale biobanks provides an unprecedented opportunity to explore the genetic basis of complex traits and diseases. However, with this vast amount of data comes the challenge of interpreting numerous associations across thousands of traits, especially given the high polygenicity and pleiotropy underlying complex phenotypes. Traditional clustering methods, which identify global patterns in data, lack the resolution to capture overlapping associations relevant to subsets of traits or genes. Consequently, there is a critical need for innovative analytic approaches capable of revealing local, biologically meaningful patterns that could advance our understanding of trait comorbidities and gene-trait interactions. Here, we applied BiBit, a biclustering algorithm, to transcriptome-wide association study (TWAS) results from PhenomeXcan, a large resource of gene-trait associations derived from the UK Biobank. BiBit allows simultaneous grouping of traits and genes, identifying biclusters that represent local, overlapping associations. Our analyses uncovered biologically interpretable patterns, including asthma-related biclusters enriched for immune-related gene sets, connections between eye traits and blood pressure, and associations between dietary traits, high cholesterol, and specific loci on chromosome 19. These biclusters highlight gene-trait relationships and patterns of trait co-occurrence that may otherwise be obscured by traditional methods. Our findings demonstrate that biclustering can provide a nuanced view of the genetic architecture of complex traits, offering insights into pleiotropy and disease mechanisms. By enabling the exploration of complex, overlapping patterns within biobank-scale datasets, this approach provides a valuable framework for advancing research on genetic associations, comorbidities, and polygenic traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601405PMC
http://dx.doi.org/10.1101/2024.11.08.622657DOI Listing

Publication Analysis

Top Keywords

traits
8
complex traits
8
traits high
8
overlapping associations
8
traits genes
8
patterns
6
associations
6
uncovering hidden
4
gene-trait
4
hidden gene-trait
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!