AI Article Synopsis

Article Abstract

Protein language models such as the transformer-based Evolutionary Scale Modeling 2 (ESM2) can offer deep insights into evolutionary and structural properties of proteins. While larger models, such as ESM2 15B, promise to capture more complex patterns in sequence space, they also present practical challenges due to their high dimensionality and high computational cost. We systematically evaluated the performance of all ESM2 models across many biological datasets to determine the impact of model size on transfer learning. Surprisingly, larger models do not always outperform smaller ones, especially when data is limited. Medium sized models, such as ESM2 650M, exhibited consistent performance, falling only slightly behind the 15B parameter model despite being over 20 times smaller. Additionally, we compared various methods of embedding compression to identify the most effective approach, and we found that mean embeddings consistently outperformed other compression methods. Our results show that ESM2 650M with mean embeddings offers an optimal balance between performance and efficiency, making it a practical and scalable choice for transfer learning in a variety of biological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601519PMC
http://dx.doi.org/10.1101/2024.11.22.624936DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
larger models
8
models esm2
8
esm2 650m
8
models
6
esm2
5
scaling efficiency
4
efficiency medium-sized
4
medium-sized transformer
4
transformer models
4

Similar Publications

This research letter discusses the impact of different file formats on ChatGPT-4's performance on the Japanese National Nursing Examination, highlighting the need for standardized reporting protocols to enhance the integration of artificial intelligence in nursing education and practice.

View Article and Find Full Text PDF

Background: Patients with cerebrovascular accident (CVA) should be involved in setting their rehabilitation goals. A personalized prediction of CVA outcomes would allow care professionals to better inform patients and informal caregivers. Several accurate prediction models have been created, but acceptance and proper implementation of the models are prerequisites for model adoption.

View Article and Find Full Text PDF

Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.

View Article and Find Full Text PDF

Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!