A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microglia States are Susceptible to Senescence and Cholesterol Dysregulation in Alzheimer's Disease. | LitMetric

Cellular senescence is a major contributor to aging-related degenerative diseases, including Alzheimer's disease (AD) but much less is known on the key cell types and pathways driving mechanisms of senescence in the brain. We hypothesized that dysregulated cholesterol metabolism is central to cellular senescence in AD. We analyzed whole transcriptomic data and utilized single-cell RNA seq integration techniques to unveil the convoluted cell-type-specific and sub-cell-type-state-specific senescence pathologies in AD using both ROSMAP and Sea-AD datasets. We identified that microglia are central components to AD associated senescence phenotypes in ROSMAP snRNA-seq data (982,384 nuclei from postmortem prefrontal cortex of 239 AD and 188 non-AD) among non-neuron cell types. We identified that homeostatic, inflammatory, phagocytic, lipid processing and neuronal surveillance microglia states were associated with AD associated senescence in ROSMAP (152,459 microglia nuclei from six regions of brain tissue of 138 early AD, 79 late AD and 226 control subject) and in Sea-AD (82,486 microglia nuclei of 42 dementia, 42 no dementia and 5 reference subjects) via integrative analysis, which preserves the meaningful biological information of microglia cell states across the datasets. We assessed top senescence associated bioprocesses including mitochondrial, apoptosis, oxidative stress, ER stress, endosomes, and lysosomes systems. Specifically, we found that senescent microglia have altered cholesterol related bioprocesses and dysregulated cholesterol. We discovered three gene co-expression modules, which represent the specific cholesterol related senescence transcriptomic signatures in postmortem brains. To validate these findings, the activation of specific cholesterol associated senescence transcriptomic signatures was assessed using integrative analysis of snRNA-seq data from iMGs (microglia induced from iPSCs) exposed to myelin, Abeta, and synaptosomes (56,454 microglia across two replicates of untreated and four treated groups). In vivo cholesterol associated senescence transcriptomic signatures were preserved and altered after treatment with AD pathological substrates in iMGs. This study provides the first evidence that dysregulation of cholesterol metabolism in microglia is a major driver of senescence pathologies in AD. Targeting cholesterol pathways in senescent microglia is an attractive strategy to slow down AD progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601396PMC
http://dx.doi.org/10.1101/2024.11.18.624141DOI Listing

Publication Analysis

Top Keywords

associated senescence
16
senescence
12
senescence transcriptomic
12
transcriptomic signatures
12
microglia
11
cholesterol
9
microglia states
8
alzheimer's disease
8
cellular senescence
8
cell types
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!