We introduce a novel model of nonsegmented negative-strand RNA virus (NNSV) transcription. Previous models have relied on polymerase behavioral differences in the highly conserved intergenic sequences. Our model hypothesizes the transcriptional gradient in NNSVs is explained through a simple model with two parameters associated with the viral polymerase. Most differences in expression can be attributed to the processivity of the polymerase while additional attenuation occurs in the presence of overlapping genes. This model reveals a correlation between polymerase processivity and genome length, which is consistent with the universal entry of polymerases through the 3' end of the genome. Using this model, it is now possible to predict the transcriptional behavior of NNSVs from genotype alone, revolutionizing the design of novel NNSV variants for biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601275PMC
http://dx.doi.org/10.1101/2024.11.11.623041DOI Listing

Publication Analysis

Top Keywords

transcriptional gradient
8
negative-strand rna
8
model
5
gradient negative-strand
4
rna viruses
4
viruses suggests
4
suggests common
4
common rna
4
rna transcription
4
transcription mechanism
4

Similar Publications

How FocA facilitates fermentation and respiration of formate by .

J Bacteriol

January 2025

Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.

Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.

View Article and Find Full Text PDF

Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses.

View Article and Find Full Text PDF

Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted.

Nature

January 2025

School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.

Tissue-resident memory CD8 T (T) cells provide protection from infection at barrier sites. In the small intestine, T cells are found in at least two distinct subpopulations: one with higher expression of effector molecules and another with greater memory potential. However, the origins of this diversity remain unknown.

View Article and Find Full Text PDF

Dorsal-ventral patterning of neural progenitors in the posterior neural tube, which gives rise to the spinal cord, has served as a model system to understand how extracellular signals organize developing tissues. While previous work has shown that signaling gradients diversify progenitor fates at the dorsal and ventral ends of the tissue, the basis of fate specification in intermediate regions has remained unclear. Here we use zebrafish to investigate the neural plate, which precedes neural tube formation, and show that its pre-patterning by a distinct signaling environment enables intermediate fate specification.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Emilia sonchifolia is a very widely used traditional Chinese medicine, with the efficacy of heat-clearing, detoxicating, dissipating blood stasis, reducing swelling and relieving pain. As a widely used traditional miao herb, Emilia sonchifolia is often used to treat upper respiratory tract infections, oral ulcer, pneumonia, mastitis, enteritis, bacillum, urinary tract infection, sores, eczema, falls and injuries, etc. In fact, many cases of liver injury caused by Emilia sonchifolia have been reported clinically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!