Knockdown (KD) of lipid droplet (LD) protein perilipin 2 (PLIN2) in beta cells impairs glucose-stimulated insulin secretion (GSIS) and mitochondrial function. Here, we addressed a pathway responsible for compromised mitochondrial integrity in PLIN2 KD beta cells. In PLIN2 KD human islets, mitochondria were fragmented in beta cells but not in alpha cells. Glucagon but not insulin level was elevated. While the formation of early LDs followed by fluorescent fatty acids (FA) analog Bodipy C12 (C12) was preserved, C12 accumulated in mitochondria over time in PLIN2 KD INS-1 cells. A lysosomal acid lipase inhibitor Lali2 prevented C12 transfer to mitochondria, mitochondrial fragmentation, and the impairment of GSIS. Direct interactions between LD-lysosome and lysosome-mitochondria were increased in PLIN2 KD INS-1 cells. Thus, FA released from LDs by microlipophagy cause mitochondrial changes and impair GSIS in PLIN2 KD beta cells. Interestingly, glucolipotoxic condition (GLT) caused C12 accumulation and mitochondrial fragmentation similar to PLIN2 KD in beta cells. Moreover, Lali2 reversed mitochondrial fragmentation and improved GSIS in human islets under GLT. In summary, PLIN2 regulates microlipophagy to prevent excess FA flux to mitochondria in beta cells. This pathway also contributes to GSIS impairment when LD pool expands under nutrient load in beta cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601606PMC
http://dx.doi.org/10.1101/2024.11.17.624030DOI Listing

Publication Analysis

Top Keywords

beta cells
28
plin2 beta
16
mitochondrial fragmentation
12
cells
10
lipid droplet
8
droplet protein
8
protein perilipin
8
insulin secretion
8
beta
8
plin2
8

Similar Publications

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Transcription factors (TFs) are indispensable for maintaining cell identity through regulating cell-specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs, yet the mechanisms that enable these TFs to regulate cell-specific targets are poorly characterized. We report that the TF NKX2.

View Article and Find Full Text PDF

E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells.

Genes Dev

December 2024

Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;

The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.

View Article and Find Full Text PDF

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

Dasatinib and Quercetin Limit Gingival Senescence, Inflammation, and Bone Loss.

J Dent Res

January 2025

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Cellular senescence has emerged as one of the central hallmarks of aging and drivers of chronic comorbidities, including periodontal diseases. Senescence can also occur in younger tissues and instigate metabolic alterations and dysfunction, culminating in accelerated aging and pathological consequences. Senotherapeutics, such as the combination of dasatinib and quercetin (DQ), are being increasingly used to improve the clinical outcomes of chronic disorders and promote a healthy life span through the reduction of senescent cell burden and senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!