Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dynamic nuclear polarization (DNP) solid-state NMR enables detection of proteins at endogenous concentrations in cells through sensitivity enhancement from nitroxide biradical polarization agents. AsymPolPOK, a novel water-soluble asymmetric nitroxide biradical, offers superior sensitivity and faster build-up times compared to existing agents like AMUPol. Here, we characterize AsymPolPOK in mammalian HEK293 cells, examining its cellular distribution, reduction kinetics, and DNP performance. We demonstrate that electroporation achieves uniform cellular delivery of AsymPolPOK, including nuclear permeation, with no cytotoxicity at millimolar concentrations. However, the cellular environment rapidly reduces AsymPolPOK to its monoradical form, with one nitroxide center showing greater reduction resistance than the other. While AsymPolPOK maintains high DNP enhancements and short build-up times in lysates, its performance in intact cells depends critically on delivery method and exposure time to cellular constituents. Electroporation yields higher, more uniform enhancements compared to incubation, but prolonged exposure to the cellular environment diminishes DNP performance in both cases. These findings establish the potential of AsymPolPOK as a polarization agent for in-cell DNP NMR while highlighting the need for developing more bio-resistant polarization agents to further advance cellular structural biology studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601236 | PMC |
http://dx.doi.org/10.1101/2024.11.09.622814 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!