UV-Induced DNA Repair Mechanisms and Their Effects on Mutagenesis and Culturability in .

bioRxiv

William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.

Published: November 2024

Mutagenic processes drive evolutionary progress, with ultraviolet (UV) radiation significantly affecting evolution. Despite extensive research on SOS response-mediated mutagenesis, UV-induced repair mechanisms remain complex, and their effects on cell survival and mutagenesis are not fully understood. We previously observed a near-perfect correlation between RecA-mediated SOS response and mutation levels in following UV treatment. However, prolonged UV exposure caused transient non-culturability and impaired SOS-mediated mutagenesis. Using fluorescent reporters, flow cytometry, promoter-reporter assays, single-gene deletions, knockouts, and clonogenic assays, we found that excessive UV exposure disrupts cellular translation, reducing SOS gene expression, albeit with minimal impact on membrane permeability or reactive oxygen species levels. While our findings underline the abundance of repair mechanisms in cells, enabling them to compensate when specific genes are disrupted, they also highlighted the differential impacts of gene deletions on mutagenesis versus culturability, leading to three major outcomes: (i) Disruption of proteins involved in DNA polymerase for translesion synthesis (UmuC and UmuD) or Holliday junction resolution (RuvC) results in significantly decreased mutagenesis levels while maintaining a transient non-culturability pattern after UV exposure. (ii) Disruption of proteins involved in homologous recombination (RecA and RecB) and nucleotide excision repair (UvrA) leads to both significantly reduced mutagenesis and a more severe transient non-culturability pattern after UV exposure, making these cells more sensitive to UV. (iii) Disruption of DNA Helicase II (UvrD), which functions in mismatch repair, does not affect mutagenesis levels from UV radiation but results in a very pronounced transient non-culturability pattern following UV exposure. Overall, our results further advance our understanding of bacterial adaptation mechanisms and the role of DNA repair pathways in shaping mutagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601333PMC
http://dx.doi.org/10.1101/2024.11.14.623584DOI Listing

Publication Analysis

Top Keywords

transient non-culturability
16
repair mechanisms
12
non-culturability pattern
12
pattern exposure
12
mutagenesis
9
dna repair
8
disruption proteins
8
proteins involved
8
mutagenesis levels
8
repair
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!