High-efficiency catalysts with refined electronic structures are highly desirable for promoting the kinetics of the oxygen evolution reaction (OER) and enhancing catalyst durability. This study comprehensively explores strategies involving metal doping and oxygen vacancies for enhancing the acidic OER catalytic activity of CoO. Through extensive screening of 3d and 4d transition metals using density functional theory (DFT) simulations, we demonstrate that the incorporation of metal dopants and oxygen vacancies into CoO potentially triggers a transition from the adsorbate evolution mechanism (AEM) to the lattice oxygen oxidation mechanism (LOM) in the oxygen evolution reaction (OER). While the formation of the O-O bond in the intermediate *OOH poses challenges, a significantly reduced overpotential facilitates efficient conversion of O to O through the LOM in *OH and lattice oxygen. Additionally, we find that Mn doping can significantly improve the stability of the catalyst. Building upon the rationale above, we employed a dual doping strategy in subsequent experiments to enhance both the activity and stability. Our final design involved the codoping of Mn and Ru in CoO, along with an appropriate amount of oxygen vacancies. This catalyst demonstrates a low overpotential (η = 230 mV) compared to pure CoO and maintains stable operation for over 120 h, representing a 12-fold increase. By exploring and harnessing the LOM, more efficient, stable, and cost-effective OER catalysts can be designed, providing crucial support for technologies such as water electrolysis in clean energy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c14158DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
12
evolution reaction
12
reaction oer
12
lattice oxygen
12
oxygen vacancies
12
oxygen
9
oer catalysts
8
oxygen oxidation
8
oer
5
strategic design
4

Similar Publications

Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.

View Article and Find Full Text PDF

Surface S-Doped Nanostructured RuO and Its Anion Passivating Effect for Efficient Overall Seawater Splitting.

ACS Nano

January 2025

State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Electrolysis of seawater for hydrogen (H) production to harvest clean energy is an appealing approach. In this context, there is an urgent need for catalysts with high activity and durability. RuO electrocatalysts have shown efficient activity in the hydrogen and oxygen evolution reactions (HER and OER), but they still suffer from poor stability.

View Article and Find Full Text PDF

Developing a two-dimensional (2D) ultrathin metal-organic framework plays a significant role in energy conversion and storage systems. This work introduced a facile strategy for engineering ultrathin NiMn-MOF nanosheets on Ni foam (NF) via in situ conversion from NiMn-layered double hydroxide (LDH). The as-synthesized LDH-derived NiMn-MOF (LDH-D NiMn-MOF) nanosheet exhibited an overpotential of 350 mV to drive a current density of 100 mA cm during oxygen evolution reaction (OER) owing to its better redox activity, hierarchical architecture, and intercalating ability.

View Article and Find Full Text PDF

Nickel-rich NCM cathode materials promise lithium-ion batteries with a high energy density. However, an increased Ni fraction in the cathode leads to complex phase transformations with electrode-electrolyte side reactions, which cause rapid capacity fading. Here, we show that an initial formation cycle at 0.

View Article and Find Full Text PDF

Rationale: Carbonate minerals are one of the most popular samples for an automated sample preparation system for CF-IRMS, such as GasBench II and iso FLOW, but no standardized analytical protocols exist. This study gives guidelines on optimal analytic conditions for carbon and oxygen isotope analysis of Ca-Mg carbonates when using the carbonate-phosphoric acid reaction method.

Methods: Calcite (CaCO-McMaster Carrara), dolomite (CaMg(CO)-MRSI Dolomite), and magnesite (MgCO-ROM Brazil Magnesite) with two grain size fractions (< 74 and 149-250 μm) were reacted with 103% (specific gravity of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!