Compared with transition metals with partially occupied 3d orbitals, Zn has a filled 3d configuration, which severely restricts electron mobility and hence usually renders Zn intrinsically inactive for electrochemical sensing. Metal single-atom catalysts are a new kind of sensing material. Owing to their unique coordination structure and high atomic utilization rate, metal single-atom catalysts show unique properties, which makes them promising for use in the field of electrochemical sensing. However, whether Zn single atoms are active sites remains to be elucidated. In this study, we prepared nitrogen-doped carbon (NC) materials by pyrolyzing ZIF-8 at high temperatures and reported that when the pyrolysis temperature was 800 °C, many Zn single atoms with Zn-N coordination structures remained in the NC material. Even when the pyrolysis temperature is increased to 1000 °C, a small number of Zn single atoms remain, and the coordination structure changes from Zn-N to Zn-N. Furthermore, unexpectedly, both residual Zn single atoms showed electrocatalytic activity for HO reduction. In particular, the electrocatalytic activity was significantly enhanced after the coordination structure was changed from Zn-N to Zn-N. Density functional theory (DFT) calculations indicate that the coordination structure of Zn-N optimizes the adsorption and desorption strength of oxygen-containing species in the electrocatalytic reaction process, which lowers the energy barrier of the rate-determining step and increases the detection sensitivity of HO nearly 4.1 times. This study revealed new properties of Zn single atoms for the electrocatalytic reduction of HO and developed a strategy to increase the electrocatalytic activity of metal single-atom catalysts through coordination number regulation, which lays the foundation for the use of Zn single atoms in the field of electrochemical sensing and provides ideas for the design of new highly active sensing materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr03815k | DOI Listing |
Small
January 2025
Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China.
Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.
View Article and Find Full Text PDFChemistry
January 2025
Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.
Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, China.
Two-dimensional (2D) black arsenic phosphorus (b-AsP) material has been attracting considerable attention for its extraordinary properties. However, its application in large-scale device fabrication remains challenging due to the limited scale and irregular shape. Here, we found the special effect of Te upon growth of b-AsP and developed a novel Te-regulated steady growth (Te-SG) strategy to obtain high-quality b-AsP single crystal.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of Future Technology, Southwest Jiaotong University, Chengdu 610031, China.
Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.
View Article and Find Full Text PDFACS EST Air
January 2025
Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, United States.
Computational models of atmospheric composition are not always physically consistent. For example, not all models respect fundamental conservation laws such as conservation of atoms in an interconnected chemical system. In well performing models, these unphysical deviations are often ignored because they are frequently minor, and thus only need a small nudge to perfectly conserve mass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!