Plant-derived materials for biomedical applications.

Nanoscale

Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China.

Published: January 2025

AI Article Synopsis

  • Plant-derived materials are gaining traction in biomedical fields due to their excellent biocompatibility and biodegradability, making them suitable for various applications.
  • This review highlights common types of these materials, like polysaccharide and protein-based polymers, and discusses their potential forms such as nanoparticles and hydrogels, especially in areas like wound healing and drug delivery.
  • While there are notable benefits, including lower contamination risks and eco-friendliness, challenges persist, such as the need for standardized isolation methods and transitioning from research to practical clinical use.

Article Abstract

With exceptional biocompatibility and biodegradability, plant-derived materials have garnered significant interest for a myriad of biomedical applications. This mini-review presents a concise overview of prevalent plant-derived materials, encompassing polysaccharide-based polymers, protein-based polymers, extracellular vesicles, mucilage, decellularized scaffolds, and whole plant-based biomass. Through different processing techniques, these plant-derived materials can be tailored into a variety of forms, such as nanoparticles, nanofibers, and hydrogels, to address the nuanced requirements of biomedical applications. With the emphasis on wound healing, tissue engineering, and drug delivery, this review underscores the unique advantages of plant-derived materials, such as lower risk of endotoxin and virus contamination, reduced ethical concerns, scalability, and eco-friendly attributes. However, challenges such as the need for the development of standardized isolation methods of these materials, and further transition from preclinical to clinical applications still remain to be solved.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr03057eDOI Listing

Publication Analysis

Top Keywords

plant-derived materials
20
biomedical applications
12
plant-derived
5
materials
5
materials biomedical
4
applications
4
applications exceptional
4
exceptional biocompatibility
4
biocompatibility biodegradability
4
biodegradability plant-derived
4

Similar Publications

Natural products and their derivatives are precious resources with extensive applications in various industrial fields. Enzymatic glycosylation is an efficient approach for chemical structure diversification and biological activity alternation of natural products. Herein, we reported a stereoselective glycosylation of complex natural product glycosides catalyzed by two carbohydrate-active enzymes (CAZys).

View Article and Find Full Text PDF

Cutting-Edge Technologies of Meat Analogs: A Review.

Food Sci Anim Resour

January 2025

Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.

This study was conducted to investigate the recent research trends of alternative protein foods being developed to replace traditional livestock foods and thus determine the current state of the technology and the potential for industrialization. The results of this study showed that the technology related to cultured meat has not yet reached industrialization. However, serum-free media development, technologies to improve culture efficiency, and technologies to improve taste and flavor are being researched.

View Article and Find Full Text PDF

Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.

View Article and Find Full Text PDF

Background And Aim: , a nematode that frequently infects the digestive tract of chickens, is a significant concern for poultry health. In response, the use of medicinal plant-derived anthelmintics was proposed as a potential solution. This study observed the effectiveness of a single, graded dose of the ethanol extract of , L.

View Article and Find Full Text PDF

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!