AI Article Synopsis

  • Osteoarthritis (OA) is the most prevalent joint disease, involving cartilage breakdown and inflammation, with recent findings indicating that neutrophil extracellular vesicles (EVs) can help reduce inflammation and support cartilage health.
  • Research involved isolating these EVs from neutrophils under different conditions to analyze their effects on chondrocytes (cartilage cells) and the underlying molecular mechanisms through mouse models of OA.
  • The study revealed that EVs from neutrophils stimulated with TGF-β significantly inhibit harmful factors in chondrocytes, with the protein SFRP5 identified as a key player in these protective effects, suggesting potential avenues for OA treatment.

Article Abstract

Background: Osteoarthritis (OA) is the most common degenerative joint disease characterized by cartilage degradation and various degrees of inflammation in the synovium. Growing evidence highlights that neutrophil extracellular vesicles (EVs) play a protective role in arthritic joints by promoting the resolution of inflammation and the synthesis of proteoglycans in cartilage. However, this homeostatic function is dependent on the activation state of neutrophils and the surrounding environment/tissues. Hence, we explored the chondroprotective functions of neutrophil-derived EVs under different stimulation conditions and the underlying molecular mechanism.

Methods: Human blood-derived neutrophils, murine bone marrow-derived neutrophils, C-28I2 cells and primary chondrocytes were used. Neutrophils were stimulated with different cytokines, and their EVs were isolated for chondrocyte stimulation and further subjected to RNA-sequencing analysis. Two experimental murine OA models were used, and the treatment was performed by intraarticular injections.

Results: Conditioned medium from neutrophils stimulated with TGF-β (N-β) had the greatest inhibitory effect on the expression of catabolic factors in stimulated chondrocytes. These protective effects were not impaired when conditioned medium of N-β from AnxA1-deficient mice was used. Consistent with these results, EVs isolated from N-β significantly reduced the expression of catabolic factors in stimulated chondrocytes. Bulk RNA-seq analysis revealed that secreted frizzled-related protein 5 (SFRP5) is upregulated in N-β-EV-stimulated chondrocytes. Furthermore, recombinant SFRP5 treatment significantly reduced the expression of catabolic factors in vitro and catabolic process in experimental murine OA models.

Conclusions: The current study emphasizes the potential therapeutic application of neutrophils in OA and provides new knowledge on the molecular mechanisms underlying their function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603793PMC
http://dx.doi.org/10.1186/s12964-024-01953-8DOI Listing

Publication Analysis

Top Keywords

expression catabolic
12
catabolic factors
12
chondroprotective functions
8
functions neutrophil-derived
8
extracellular vesicles
8
secreted frizzled-related
8
frizzled-related protein
8
neutrophils stimulated
8
evs isolated
8
experimental murine
8

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Effects of miRNAs in inborn error of metabolism and treatment strategies.

Postgrad Med J

January 2025

Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.

Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.

View Article and Find Full Text PDF

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.

View Article and Find Full Text PDF

Ethnopharmacological Importance: Zhili decoction (ZLD) is a traditional Chinese medicine prescription for ulcerative colitis (UC). However, the mechanism by which ZLD exerts its therapeutic effects in the context of UC remains unclear.

Aim Of Study: The aim of this study was to investigate the effects of ZLD on the gut microbiota and related fecal metabolite levels using a mouse model of UC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!