Background: Hibiscus syriacus L. is a deciduous shrub with a strong environmental resistance and wide application prospects. The genetic background and ploidy levels of Hibiscus cultivars are complex, and polyploid breeding has long been an important method for developing new Hibiscus cultivars. However, the relationship of ploidy levels with leaf morphology, stomatal characteristics, and leaf anatomy remains unclear.
Results: This study analyzed three ploidy levels (triploid, tetraploid, and hexaploid) of Hibiscus syriacus. Flow cytometry confirmed the ploidy levels, and morphological traits were evaluated. Leaf length, leaf width, and petiole length decreased with increasing ploidy. Stomatal length, stomatal width, guard cell length, and guard cell width increased and stomatal number and density decreased with increasing ploidy. The hexaploids exhibited the highest midrib diameter and palisade tissue thickness values. Correlation analyses revealed that stomatal morphology served as a reliable marker for determining ploidy levels.
Conclusion: This study highlights the impact of varying ploidy levels on the leaf and stomatal morphologies and leaf anatomy of Hibiscus syriacus. These findings can provide theoretical guidance for improving Hibiscus cultivars in terms of stress resistance, adaptability, and ornamental traits, and for developing new cultivars with enhanced characteristics. Future research should focus on utilizing these morphological markers to optimize breeding strategies for Hibiscus cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603925 | PMC |
http://dx.doi.org/10.1186/s12870-024-05778-y | DOI Listing |
Sci Data
December 2024
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT).
View Article and Find Full Text PDFPlanta
December 2024
Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
Polyploidization (diploidy → polyploidy) was more likely to be positively associated with seed mass than with seed germination. Polyploidy is common in flowering plants, and polyploidization can be associated with the various stages of a plant's life cycle. Our primary aim was to determine the association (positive, none or negative) of polyploidy with seed mass/germination via a literature review.
View Article and Find Full Text PDFSci Data
December 2024
Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Persicaria tinctoria (2n = 40) is an important traditional medicinal plant and natural dye source within the genus Persicaria. P. tinctoria has been utilized for its antibacterial, antiviral, anti-inflammatory, and tumor treatment properties.
View Article and Find Full Text PDFMar Biotechnol (NY)
December 2024
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids.
View Article and Find Full Text PDFHum Reprod
December 2024
IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain.
Study Question: Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data?
Summary Answer: It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity.
What Is Known Already: Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!