A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In silico analysis of L- and G-type lectin receptor kinases in tomato: evolution, diversity, and abiotic responses. | LitMetric

AI Article Synopsis

  • Solanum lycopersicum, a key crop, has its genome sequenced, revealing important information about lectin receptor-like kinases (LecRLKs), particularly L-type and G-type families.
  • The study identified 161 lectin genes in the tomato genome, with gene duplication analysis showing that tandem and segmental duplications significantly contribute to the expansion of G-type LecRLKs.
  • Differential expression analysis during abiotic stresses (like drought and heat) highlighted specific LecRLK genes, suggesting their roles in stress response and the potential for improving crop resilience through genetic strategies.

Article Abstract

Solanum lycopersicum (family: Solanaceae) is a crucial crop and model organism for many phenotypic traits, and its sequenced genome provides valuable insights into plant biology and crop improvement. This study investigated lectin receptor-like kinases (LecRLKs) in tomato, focusing on L-type and G-type families. Mining the tomato genome (ITAG2.4) revealed 161 putative lectin genes across seven families, with GNA-related genes being the most abundant. Gene duplication analysis indicated that tandem and segmental duplications were the primary mechanisms driving LecRLK gene family expansion, particularly for G-type LecRLKs. These duplicated genes showed evidence of both purifying and negative selection, suggesting functional conservation and sub-functionalization. L-type and G-type LecRLKs exhibited diverse domain rearrangement architectures and subcellular localizations, with G-type LecRLKs showing greater expansion and architectural diversity. Differential expression analysis during abiotic stress (drought, heat, and cold stress) revealed key responsive genes. During drought stress, 63.2% of L-type and 18.5% of G-type LecRLK genes were expressed, with L-type Solyc09g005000.1 and G-type Solyc03g078360.1 genes showing significant 2-fold upregulation. Heat stress (42 °C) induced the upregulation of L-type Solyc04g071000.1 and G-type Solyc03g078360.1 and Solyc04g008400.1, particularly after 12-24 h of exposure. Promoter analysis revealed numerous stress-related cis-elements. Transcription factor predictions and miRNA targeting sites suggest complex regulatory mechanisms. This comprehensive in silico characterization of tomato LecRLKs, including their expansion patterns and evolutionary pressures, provides insights into their potential roles in abiotic stress responses and lays the groundwork for enhancing crop resilience through targeted breeding or genetic engineering approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600720PMC
http://dx.doi.org/10.1186/s12864-024-11014-6DOI Listing

Publication Analysis

Top Keywords

g-type lecrlks
12
g-type
8
l-type g-type
8
abiotic stress
8
g-type solyc03g0783601
8
genes
6
lecrlks
5
l-type
5
stress
5
silico analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!