Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, the issue of electromagnetic pollution has become increasingly prominent. Flexible polymer films with various conductive fillers are preferred to address this problem due to their highly efficient and durable electromagnetic interference (EMI) shielding performance. However, their applications are restricted by the unbalanced and insufficient electromagnetic wave absorption and shielding capabilities, as well as the weak interlayer bonding force. In this work, robust flexible multifunctional AgNW/MXene/NiCo-C (AMN) films are fabricated by hierarchical casting assembly and an encapsulated conductive fabric strategy. The synergistic effect of the conductive-absorption integrated sandwich core fabric and the conductive encapsulation layer collaborate to provide excellent absorption-dominated EMI shielding (EMI SE = 89.12 dB with an ultralow reflectivity value of 0.19) and Joule heating (a high temperature of 103.5 °C at 4.5 V) performances. Besides, AMN films with embedded fabrics as a reinforcement structure achieved enhanced peel (1.97 N mm) and tensile (7.85 MPa) strengths through an interface enhancement process (plasma and pre-immersion treatments). In conclusion, this paper proposes a feasible paradigm to prepare flexible multifunctional conductive films, which demonstrate tremendous potential for applications in the wearable electronics and aerospace fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202409033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!