Coastal ecosystems are affected by a multitude of anthropogenic stressors. As the Baltic Sea ecosystems rank among the most altered marine ecosystems worldwide, they represent ideal model regions to study ecosystem responses to anthropogenic pressures. Our statistical analysis of data including dissolved organic carbon and nitrogen, as well as bacterial abundance and -biomass production from the time-series station Boknis Eck in the southwestern Baltic Sea reveals that bacterial biomass production intensifies towards summer following the phytoplankton spring bloom. Moreover, warming, especially very high temperatures in summer, enhances stratification and bacterial biomass production despite long-term reduction in nutrient input. A strong decrease in oxygen in the bottom layer is possibly linked to this. We detect an increasing trend in bacterial biomass production along with intensifying warming and stratification, and more frequently occurring hypoxia despite ongoing restoration efforts. If this trend continues, the coastal Baltic Sea ecosystem is likely to be altered even further. Coastal ecosystems play pivotal roles in mitigating impacts of climate change but if destroyed, they may amplify climate change further calling for stronger ecosystem management strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603197 | PMC |
http://dx.doi.org/10.1038/s41598-024-80451-w | DOI Listing |
Biofouling
January 2025
Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, Massachusetts, USA.
In this study, we evaluated the impact of Epigalocatechin-3-gallate (EGCG) on biofilm development for 24 and 46 h using high-resolution confocal laser scanning microscopy. EGCG treatment led to the formation of interspaced exopolysaccharide (EPS)-microcolony complexes unevenly distributed on the surface of hydroxyapatite disc, forming a thinner and less complex biofilm structure with significantly reduced biomass, matrix volume, and thickness compared to the NaCl treated group (negative control). At 46 h, the biofilm of the EGCG-treatment group failed to form the bacterial-EPS superstructures which is characteristic of the biofilm in the negative control group.
View Article and Find Full Text PDFThe aquifer in the subseafloor igneous basement is a massive, continuous microbial substrate, yet sparingly little is known about life in this habitat. The work to date has focused largely on describing microbial diversity in the young basement (<10 Ma), where the basaltic crust is still porous and fluid flow through it is active. Here, we test the hypothesis that microbial life exists in subseafloor basement >65 Ma using samples collected from the Louisville Seamount Chain via seafloor drilling.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China. Electronic address:
In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L hardly affected the total nitrogen removal efficiency (TNRE).
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
The rhizosphere, the soil zone surrounding plant roots, serves as a reservoir for numerous beneficial microorganisms that enhance plant productivity and crop yield, with substantial potential for application as biofertilizers. These microbes play critical roles in ecological processes such as nutrient recycling, organic matter decomposition, and mineralization. Plant growth-promoting rhizobacteria (PGPR) represent a promising tool for sustainable agriculture, enabling green management of crop health and growth, being eco-friendly alternatives to replace chemical fertilizers and pesticides.
View Article and Find Full Text PDFSci Rep
December 2024
Bioresource and Environmental Security, Sandia National Laboratories, P. O. Box 969, Livermore, CA, 94551-0969, USA.
Global health is affected by viral, bacterial, and fungal infections that cause chronic and often fatal diseases. Identifying novel antimicrobials through innovative methods that are active against human pathogens will create a new, necessary pipeline for chemical discovery and therapeutic development. Our goal was to determine whether algal production systems represent fertile ground for discovery of antibiotics and antifungals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!