Understanding which viral variants evade neutralization is crucial for improving antibody-based treatments, especially with rapidly evolving viruses like SARS-CoV-2. Yet, conventional assays are labor intensive and cannot capture the full spectrum of variants. We present a deep learning approach to predict changes in neutralizing antibody activity of COVID-19 therapeutics and vaccine-elicited sera/plasma against emerging viral variants. Our approach leverages data of 67,885 unique SARS-CoV-2 Spike sequences and 7,069 in vitro assays. The resulting model accurately predicted fold changes in neutralizing activity (R = 0.77) for a test set (N = 980) of data collected up to eight months after the training data. Next, the model was used to predict changes in activity of current therapeutic and vaccine-induced antibodies against emerging SARS-CoV-2 lineages. Consistent with other work, we found significantly reduced activity against newer XBB descendants, notably EG.5, FL.1.5.1, and XBB.1.16; primarily attributed to the F456L spike mutation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603192 | PMC |
http://dx.doi.org/10.1038/s41540-024-00471-0 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFComput Biol Med
January 2025
School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:
The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.
View Article and Find Full Text PDFBr J Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Western Road, Xi'an, Shannxi, 710061.
Purpose: To explore the effect of different reconstruction algorithms (ASIR-V and DLIR) on image quality and emphysema quantification in chronic obstructive pulmonary disease (COPD) patients under ultra-low-dose scanning conditions.
Materials And Methods: This prospective study with patient consent included 62 COPD patients. Patients were examined by pulmonary function test (PFT), standard-dose CT (SDCT) and ultra-low-dose CT (ULDCT).
Bioinformatics
January 2025
Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.
Unlabelled: Metabolomics extensively utilizes Nuclear Magnetic Resonance (NMR) spectroscopy due to its excellent reproducibility and high throughput. Both one-dimensional (1D) and two-dimensional (2D) NMR spectra provide crucial information for metabolite annotation and quantification, yet present complex overlapping patterns which may require sophisticated machine learning algorithms to decipher. Unfortunately, the limited availability of labeled spectra can hamper application of machine learning, especially deep learning algorithms which require large amounts of labelled data.
View Article and Find Full Text PDFObjective: The objective of this research was to devise and authenticate a predictive model that employs CT radiomics and deep learning methodologies for the accurate prediction of synchronous distant metastasis (SDM) in clear cell renal cell carcinoma (ccRCC).
Methods: A total of 143 ccRCC patients were included in the training cohort, and 62 ccRCC patients were included in the validation cohort. The CT images from all patients were normalized, and the tumor regions were manually segmented via ITK-SNAP software.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!