Hepatocellular carcinoma (HCC) is a major cause of cancer deaths globally. Unlike traditional molecularly targeted drugs, magnetically controlled drug delivery to micro/nanorobots enhances precision in targeting tumors, improving drug efficiency and minimizing side effects. This study develops a dual-responsive, magnetically controlled drug delivery system using PEGylated paramagnetic nanoparticles conjugated with decoy receptor 3 (DCR3) antibodies. The clusters demonstrate capabilities for long-range, magnetically driven control and molecular chemotaxis. Paramagnetic PEGylated particles form vortex- and liquid-like drug moieties within a magnetically controlled system. Vortex-like nanoparticle clusters exhibit high controllability and countercurrent movement, while liquid-nanoparticle robot clusters display greater deformability. Upon loading with DCR3 antibodies, the particles navigate along DCR3-protein gradients in blood and tissue, effectively targeting liver tumor sites in vivo. Clusters of DCR3-coupled magnetic nanoparticles target cells that highly express DCR3, thereby effectively inhibiting tumor cell proliferation and migration. Compared with conventional nanomedicine, DCR3-coupled magnetic nanoparticle clusters are capable of delivering controlled drugs over long distances and responding in a molecular-targeting manner. This research is expected to significantly impact the field of precise tumor drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202402909 | DOI Listing |
Aliment Pharmacol Ther
January 2025
Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.
Background And Aims: The laxative lubiprostone has been shown to decrease intestinal permeability. We aimed to assess the safety and efficacy of lubiprostone administered for 48 weeks in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).
Approach And Results: A randomised placebo-controlled trial was conducted in a specialised MASLD outpatient clinic at the National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
Nanoscale Horiz
January 2025
Departmento de Fisica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile.
Low-energy light ion beams are an essential resource in lithography for nanopatterning magnetic materials and interfaces due to their ability to modify the structure and properties of metamaterials. Here we create ferromagnetic/non-ferromagnetic heterostructures with a controlled layer thickness and nanometer-scale precision. For this, hydrogen ion (H) irradiation is used to reduce the antiferromagnetic nickel oxide (NiO) layer into ferromagnetic Ni with lower fluence than in the case of helium ion (He) irradiation.
View Article and Find Full Text PDFFront Surg
December 2024
Department of Anorectal Diseases, Shanghai Baoshan District Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China.
Background: The main goals of surgery for fistula-in-ano are to completely resolve the condition and maintain optimal anal function. Effective management of the internal opening during and proper postoperative drainage of the intersphincter plane are crucial for achieving successful outcomes. This study evaluated the clinical efficacy of a novel sphincter-sparing technique for treating high transsphincteric anal fistula (HTAF).
View Article and Find Full Text PDFFront Psychol
December 2024
Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, PSYR2, Bron, France.
Background: Anhedonia, including social, physical, and less-known, olfactory, stands as a core symptom of major depressive disorder (MDD). At the neurobiological level, anhedonia has been associated with abnormal activity within the reward system, suggesting a key role for dopamine. Repetitive Transcranial Magnetic Stimulation (rTMS) has emerged as an innovative treatment for alleviating depressive symptoms.
View Article and Find Full Text PDFArch Phys Med Rehabil
December 2024
Stroke Research Center, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, China. Electronic address:
Objective: Repetitive transcranial magnetic stimulation (rTMS) is a promising approach in improving swallowing function after stroke. However, comparative efficacy of different rTMS protocols for post-stroke dysphagia (PSD) remains unclear.
Data Sources: PubMed, Embase and Cochrane database were systematically searched for eligible random controlled trials (RCTs) from inception to 30 August 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!