Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interlayer excitons (IX), spatially separated electron-hole pair quasiparticles, can form in type-II van der Waals heterostructures (vdWH). To date, the most widely studied IX in hetero- and homobilayer transition metal dichalcogenides feature momentum-indirect and visible interlayer recombinations. However, momentum-direct IX emissions and interlayer absorptions, especially in the infrared, are crucial for excitonic devices but remain underexplored. In this work, we propose and construct a multilayer WSe/InSe vdWH that hosts momentum-direct IX and manifests near-infrared interlayer absorptions at room temperature, verified by first-principles density functional theory calculations. We conduct power- and temperature-dependent photoluminescence spectroscopies and extract the IX binding energy to be 43 ± 5 meV. Furthermore, we manipulate the IX emission electrically via the Stark effect and tune its energy by 180 meV. Taking advantage of the direct interlayer absorption, we fabricate a near-infrared vdWH photodetector modulated by strong photogating effect, and achieve the optimal photoresponsivity, specific detectivity, and response time of 33 A W, 1.8 × 10 Jones, and 3.7 μs at 1150 nm. In addition, we test the imaging capability of the photodetector by integrating it into a single-pixel imaging system. Our work showcases the possibility for constructing infrared-responsive vdWH that hosts momentum-direct IX for future excitonic devices of optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c11195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!