Skeletal fracture resistance emerges from multiple components of bone structure like microarchitecture, matrix mineralization, and organization. These characteristics are engendered via mechanisms like the hypoxia-inducible factors (HIF) pathway, involving two paralogs, HIF-1α and HIF-2α. Under normoxia, HIF-α is targeted for degradation via von-Hippel Lindau (VHL); hypoxia enables HIF-α stabilization and induction of target genes. We previously showed that osteocytic Vhl deletion or expression of degradation-resistant HIF-2α cDR female mice each produced high bone mass, whereas degradation-resistant osteocytic HIF-1α produced no overt phenotype. We report within that Vhl cKO increased bone strength, while HIF-2α cDR displayed markedly reduced bone strength below Cre-negative controls. This suggests that VHL and HIF-2α drive distinct responses that promote disparate effects on bone strength. Both Vhl deletion or HIF-2α accumulation generated two discrete bone morphologies: an outer lamellar cortex and a woven, poorly mineralized endocortex that imparted dramatically different functional outcomes. Our studies reveal novel influence of osteocytic HIF-2α signaling on collagen matrix organization, mineralization, and bone strength.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2024.117339DOI Listing

Publication Analysis

Top Keywords

bone strength
16
bone
8
vhl deletion
8
hif-2α cdr
8
vhl
6
hif-2α
6
osteocytic
4
osteocytic oxygen
4
oxygen sensing
4
sensing distinct
4

Similar Publications

Improving the regeneration of the tendon-bone interface (TBI) helps to decrease the risk of rotator cuff retears after repair surgeries. Unfortunately, the lack of inherent healing capacity of the TBI, insufficient mechanical properties, and abnormal and persistent inflammation during repair are the key factors leading to suboptimal healing of the rotator cuff. Therefore, a high-strength rotator cuff repair material capable of regulating the unbalanced immune response and enhancing the regeneration of the TBI is urgently needed.

View Article and Find Full Text PDF

Scapho-metacarpal dual mobility prosthesis for TMC-1 joint salvage: technical insights.

Arch Orthop Trauma Surg

January 2025

BG Klinikum Unfallkrankenhaus Berlin, Department of Hand-, Replantation- and Microsurgery and Chair of Hand-, Replantation- and Microsurgery, Charité Universitätsmedizin Berlin, Berlin, Germany.

Introduction: Rhizarthrosis, or osteoarthritis of the trapeziometacarpal joint, predominantly affects women over 50, with up to 30% experiencing some degree of arthritis in this joint. Traditional surgical approaches, such as trapeziectomy with ligament reconstruction, can result in some patients in persistent pain or limited functionality. TMC ball-in-socket arthroplasty, with a cup placed in the distal scaphoid, offers a promising alternative to traditional arthrodesis or resection-suspension arthroplasty.

View Article and Find Full Text PDF

Introduction: A decrease in bone mineral density (BMD) accompanied by muscle weakness during aging significantly increases the probability of low-energy fracture occurrence, but it can also happen in those with a non-osteoporotic score (treatment gap). To improve the identification process of those at risk, the authors proposed using the interconnectivity between bone mineral density and muscle tissue.

Material And Methods: A total of 20,776 patient records were collected from the database in the period 2008-2021.

View Article and Find Full Text PDF

Through millions of years of evolution, bones have developed a complex and elegant hierarchical structure, utilizing tropocollagen and hydroxyapatite to attain an intricate balance between modulus, strength, and toughness. In this study, continuous fiber silk composites (CFSCs) of large size are prepared to mimic the hierarchical structure of natural bones, through the inheritance of the hierarchical structure of fiber silk and the integration with a polyester matrix. Due to the robust interface between the matrix and fiber silk, CFSCs show maintained stable long-term mechanical performance under wet conditions.

View Article and Find Full Text PDF

Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.

Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!