To address the issue of soil contamination caused by associated elements during the extraction and processing of radioactive minerals, this study employed two types of chemical leaching methods, one based on organic acids and the other on carbonates, to remediate radium-contaminated soil. Large-scale soil slurry reactors were used in field experiments to investigate the effects of acidic and alkaline leaching agents on the removal of Ra from naturally contaminated soil, and the optimal operational conditions were determined. The combined use of organic acids, salts and solubilizers has demonstrated high removal rates of radionuclide on a laboratory scale. Pilot scales revealed that using FeCl, oxalic acid, NaClO, and HEDP, or NaCO, NaHCO, HO, and deep eutectic solvent (DES) as leaching agents achieved the best remediation outcomes for radium-contaminated soil. Under optimal conditions, the radium removal efficiencies of the two leaching systems reached 93.02% and 90.66%, respectively. Characterization analyses using X-ray diffraction (XRD), fourier transform infrared spectrometer (FT-IR), and scanning electron microscope (SEM) demonstrated that the chemical leaching methods are both safe and reliable, effectively removing radium while having minimal impact on the soil's original structure. Additionally, these methods have the potential to replenish soil nutrients and restore its functional use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143817 | DOI Listing |
Nat Commun
December 2024
Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Environmental & Food Safety Research group of the University of Valencia (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Road CV-315 Km 10.7, 46113, Moncada, Valencia, Spain.
Microfibres released from textiles are one of the most common types of microplastics (MPs) found in the environment. Whether they are synthetic or natural, they can undergo degradation in different environmental matrices. This may result in the leaching of a variety of chemicals, mainly textile dyes and additives of high toxicity that need to be regulated.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China. Electronic address:
The ongoing weathering of metal sulfides has substantially posed threats to the eco-systems. For remediating metal sulfides-contaminated soils, phytostabilization is a promising nature-based technique that immobilizing heavy metals (HMs) that dissolved from metal sulfides in the rhizosphere, preventing their leaching and migrating into soil and groundwater. However, the underlying mechanism regarding the mineral-root interaction involving primary metal sulfides such as galena (PbS) during the remediation processes has yet been well studied.
View Article and Find Full Text PDFTissue Cell
December 2024
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan. Electronic address:
Addressing mandibular defects poses a significant challenge in maxillofacial surgery. Recent advancements have led to the development of various biomimetic composite scaffolds aimed at facilitating mandibular defect reconstruction. This study aimed to assess the regenerative potential of a novel composite scaffold consisting of polylactic acid (PLA), hydroxyapatite nanoparticles (n-HA), gelatin, hesperidin, and human dental pulp stem cells (DPSCs) in a rat model of mandibular bone defect.
View Article and Find Full Text PDFPhthalates (PAEs) are endocrine-disrupting chemicals that are widely present in everyday life and enter the human body through various pathways. The release of PAEs into the environment through pathways that include leaching, evaporation, abrasion, and the use of personal care products exposes humans to PAEs via ingestion, inhalation, and dermal absorption. Pregnant women, as a particularly vulnerable population, risk adverse newborn growth and development when exposed to PAEs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!