Enhancing epithelial regeneration with gelatin methacryloyl hydrogel loaded with extracellular vesicles derived from adipose mesenchymal stem cells for decellularized tracheal patching.

Int J Biol Macromol

Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, China.. Electronic address:

Published: January 2025

AI Article Synopsis

  • Patch tracheoplasty is an alternative technique for treating congenital tracheal stenosis, which reduces tension during repair but has a higher risk of complications like restenosis and tracheal collapse.
  • The study explores using a new decellularization method with CHAPS and DNase to create a biocompatible tracheal matrix and enhance epithelial regeneration using extracellular vesicles from adipose mesenchymal stem cells.
  • Experimental results showed that this method improved cell proliferation and re-epithelialization in both lab testing and animal models, indicating potential for clinical application in repairing tracheal defects.

Article Abstract

Patch tracheoplasty offers an alternative approach to repairing congenital tracheal stenosis without tension but poses a higher risk of restenosis, granulation tissue formation, and tracheal collapse. The use of tissue-engineered patches for tracheoplasty has been proposed as a solution. Studies suggest that decellularization methods are effective in preparing tracheal patches; however, further research is necessary to improve their efficiency and safety. This study introduces a novel decellularization method using 3-[(3Cholamidopropyl)dimethylammonio]propanesulfonate (CHAPS) and DNase to create a biocompatible tracheal matrix. To enhance the regeneration of epithelial regions within decellularized tracheal scaffolds, this study conducted experimental validations at various levels, both in vivo and in vitro, by introducing extracellular vesicles derived from adipose mesenchymal stem cells as an intervention measure. The ability to promote epithelial regeneration was validated both in vitro and in vivo by incorporating a GelMA hydrogel loaded with adipose-derived mesenchymal stem cell extracellular vesicles (ADMSC-EVs). Evaluation of HBE cell proliferation on tracheal patches treated with varying concentrations of ADMSC-EVs, along with migration and invasion experiments on ADMSC-EV-treated HBE cells, demonstrated enhanced epithelialization in vitro. The inflammatory response and vascular regeneration were assessed via subcutaneous implantation in rats for two weeks. In a rabbit tracheal defect model, the hydrogel loaded with ADMSC-EVs accelerated re-epithelialization in the patch area. This approach shows promise as a novel material for tracheal patching in clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137927DOI Listing

Publication Analysis

Top Keywords

hydrogel loaded
12
extracellular vesicles
12
mesenchymal stem
12
tracheal
9
epithelial regeneration
8
vesicles derived
8
derived adipose
8
adipose mesenchymal
8
stem cells
8
decellularized tracheal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!