Edible fungal polysaccharides have emerged as significant bioactive compounds with diverse therapeutic potentials, including notable anti-tumor effects. Derived from various fungal sources, these polysaccharides exhibit complex biological activities such as antioxidant, immune-modulatory, anti-inflammatory, and anti-obesity properties. In cancer therapy, members of this family show promise in inhibiting tumor growth and metastasis through mechanisms like apoptosis induction and modulation of the immune system. This review provides a detailed examination of contemporary techniques for the targeted isolation and structural elucidation of edible fungal polysaccharides. Additionally, the review highlights the application of advanced artificial intelligence (AI) methodologies to facilitate efficient and accurate structural analysis of these polysaccharides. It also explores their interactions with immune cells within the tumor microenvironment and their role in modulating gut microbiota, which can enhance overall immune function and potentially reduce cancer risks. Clinical studies further demonstrate their efficacy in various cancer treatments. Overall, edible fungal polysaccharides represent a promising frontier in cancer therapy, leveraging their natural origins and minimal toxicity to offer novel strategies for comprehensive cancer management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138089 | DOI Listing |
J Dev Orig Health Dis
January 2025
Danone Research & Innovation Center, Utrecht, The Netherlands.
The nutritional environment during fetal and early postnatal life has a long-term impact on growth, development, and metabolic health of the offspring, a process termed "nutritional programming." Rodent models studying programming effects of nutritional interventions use either purified or grain-based rodent diets as background diets. However, the impact of these diets on phenotypic outcomes in these models has not been comprehensively investigated.
View Article and Find Full Text PDFFood Res Int
January 2025
VTT Technical Research Centre of Finland, Tekniikantie 21, 02044 VTT Espoo, Finland. Electronic address:
Oleaginous yeasts offer a promising sustainable alternative for producing edible lipids, potentially replacing animal and unsustainable plant fats and oils. In this study, we screened 11 oleaginous yeast species for their lipid profiles and identified Apiotrichum brassicae as the most promising candidate due to its versatility across different growth media. A.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
Most photosensitizers have limited responsiveness to visible light, however, visible light is a light source with a wide range of wavelengths and the most common in daily life, and making full use of visible light can help to enhance the photodynamic antimicrobial properties of photosensitizers. To tackle this issue, this study confirmed that alizarin has a good absorption capacity for visible light by UV-DRS analysis. Theoretical calculations showed that alizarin might be excited through the charge transfer (CT) mechanism.
View Article and Find Full Text PDFFood Res Int
January 2025
Chemistry of Natural Compounds Department, National Research Centre, 33 El-Behouth St, Dokki-Giza 12622, Egypt. Electronic address:
The aim of this study is to evaluate the effect of some microalgae species adding with different forms on minced beef meat shelf life during cryogenic storage for 13 days. Chlorella vulgaris and Arthrospira platensis are chosen because of their safety and high nutritional value. Microalgae nanoparticles with their different forms have been prepared by using emulsification solvent evaporation method.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China. Electronic address:
Dictyophora indusiata is an edible fungus, which is known as bamboo fungus. D. indusiata polysaccharide is considered as the most important bioactive component.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!